Skip to main content Accessibility help

Temperature dynamics in decaying isotropic turbulence with Joule heat production

  • Dario De Marinis (a1) (a2), Sergio Chibbaro (a2) (a3), Marcello Meldi (a2) (a3) and Pierre Sagaut (a2) (a3)


This paper presents an extension of existing works dealing with the dynamics of a passive scalar in freely decaying isotropic turbulence, by accounting for a production mechanism of the passive scalar itself. The physically relevant case of the temperature dynamics in the presence of Joule heating via the dissipation of the turbulent kinetic energy is selected and analysed by theoretical and numerical means. In particular, the sensitivity of the temperature decay to the non-dimensional parameters Prandtl number ( $\mathit{Pr}$ ) and Eckert number ( $\mathit{Ec}$ ), the latter measuring the intensity of the internal energy production mechanism, is investigated. The time behaviour of the global quantities such as the temperature variance $ \overline{{\theta }^{2} } (t)$ and its destruction rate ${\varepsilon }_{\theta } (t)$ is analysed, and a detailed analysis of the temperature variance spectrum ${E}_{\theta } (k)$ is provided. In the case of a very strong heating mechanism, some important modifications of the temperature dynamics are observed. The time-decay-law exponents of the global physical quantities assume new values, which are governed only by features of the kinetic energy spectrum, while they depend on the shape of ${E}_{\theta } (k)$ in the classical free-decay case. The temperature variance spectrum ${E}_{\theta } (k)$ exhibits two new spectral ranges. One is a convective–production range such that ${E}_{\theta } (k)\propto {k}^{1/ 3} $ is observed for a finite time at all values of $\mathit{Pr}$ . In the case of very diffusive fluids with $\mathit{Pr}\ll 1$ , a convective–diffusive–production range with ${E}_{\theta } (k)\propto {k}^{- 7/ 3} $ is also detected.


Corresponding author

Email address for correspondence:


Hide All
André, J. C. & Lesieur, M. 1977 Influence of helicity on high Reynolds number isotropic turbulence. J. Fluid Mech. 81, 187207.
Antonia, R. A. & Orlandi, P. 2003 The Batchelor constant in decaying isotropic turbulence. Phys. Fluids 15, 20842086.
Batchelor, G. K. 1959a Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Batchelor, G. K. 1959b Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J. Fluid Mech. 5, 134139.
Bogucki, D., Domaradzki, J. A. & Yeung, P. K. 1997 Direct numerical simulations of passive scalars with $Pr\gt 1$ advected by turbulent flow. J. Fluid Mech. 343, 111130.
Bos, W. J. T. & Bertoglio, J.-P. 2006 Dynamics of spectrally truncated inviscid turbulence. Phys. Fluids 18, 071701.
Bos, W. J. T. & Bertoglio, J.-P. 2007 Inertial range scaling of scalar flux spectra in uniformly sheared turbulence. Phys. Fluids 19, 025104.
Bos, W. J. T., Rubinstein, R. & Fang, L. 2012 Reduction of mean-square advection in turbulent passive scalar mixing. Phys. Fluids 24, 075104.
Bos, W. J. T., Touil, H. & Bertoglio, J. P. 2005 Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient. Phys. Fluids 17, 125108.
Chasnov, J., Canuto, V. M. & Rogallo, R. S. 1988 Turbulence spectrum of a passive temperature field: results of a direct numerical simulation. Phys. Fluids 31, 20652067.
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.
Corrsin, S. 1961 The reactant concentration spectrum in turbulent mixing with a first-order reaction. J. Fluid Mech. 11, 407416.
Corrsin, S. 1964 Further generalization of Onsager’s cascade model for turbulent spectra. Phys. Fluids 7, 11561159.
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2010 The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow Turbul. Combust. 85 (3), 549566.
Driscoll, R. J. & Kennedy, L. A. 1984 A model for the spectrum of passive scalars in an isotropic turbulence field. Phys. Fluids 28, 7280.
Gibson, C. H. 1968 Fine structure of scalar fields mixed by turbulence. II. Spectral theory. Phys. Fluids 11, 23162327.
Gibson, C. H. & Schwarz, W. H. 1963 The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid Mech. 16, 365377.
Grant, H. L., Hughes, W. M., Vogel, W. M. & Moillet, A. 1968 The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech. 34, 423442.
Herr, S., Wang, L. P. & Collins, L. R. 1996 EDQNM model of a passive scalar with a uniform mean gradient. Phys. Fluids 8, 15881608.
Herring, J. R., Schertzer, D., Lesieur, M., Newman, G. R., Chollet, J. P. & Larcheveque, M. 1982 A comparative assessment of spectral closures as applied to passive scalar diffusion. J. Fluid Mech. 124, 411437.
Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akad. Nauk SSSR Dokl. 30, 301305.
Kraichnan, R. H. 1968 Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11 (5), 945953.
Krstulovic, G. & Brachet, M. E. 2008 Two-fluid model of the truncated Euler equations. Physica D 237, 20152019.
Lesieur, M. 2008 Turbulence in Fluids, 4th edn. Springer.
Lesieur, M., Montmory, C. & Chollet, J.-P. 1987 The decay of kinetic energy and temperature variance in three-dimensional isotropic turbulence. Phys. Fluids 30, 12781286.
Meldi, M. & Sagaut, P. 2012 On non-self similar regimes in homogeneous isotropic turbulence decay. J. Fluid Mech. 711, 364393.
Meldi, M., Sagaut, P. & Lucor, D. 2011 A stochastic view of isotropic turbulence decay. J. Fluid Mech. 668, 351362.
Miller, P. L. & Dimotakis, P. E. 1996 Measurements of scalar power spectra in high Schmidt number turbulent jets. J. Fluid Mech. 308, 129146.
Obukhov, A. M. 1949 Temperature field structure in a turbulent flow. Izv. Acad. Nauk SSSR Geogr. Geofiz 13, 5869.
Obukhov, A. M. 1968 Structure of the temperature field in turbulent flow. Tech. Rep. Defense Technical Information Center Document.
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.
Pao, Y. H. 1965 Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8, 10631075.
Qian, J. 1986 Turbulent passive scalar field of a small Prandtl number. Phys. Fluids 29, 35863589.
Qian, J. 1990 The spectrum of a turbulent passive scalar in the viscous-convective range. J. Fluid Mech. 217, 203212.
Rubinstein, R. & Clark, T. T. 2005 Self-similar turbulence evolution and the dissipation rate transport equation. Phys. Fluids 17, 095104.
Saffman, P. J. 1967 The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581593.
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
Schlichting, E. 1968 Boundary Layer Theory, 6th edn. McGraw-Hill.
Tchoufag, J., Sagaut, P. & Cambon, C. 2012 Spectral approach to finite Reynolds number effects on Kolmogorov’s $4/ 5$ law in isotropic turbulence. Phys. Fluids 24, 015107.
Ulitsky, M., Vaithianathan, T. & Collins, L. R. 2002 A spectral study of differential diffusion of passive scalars in isotropic turbulence. J. Fluid Mech. 460, 138.
Vignon, J. M. & Cambon, C. 1980 Thermal spectral calculation using Eddy Damped Quasi Normal Markovian theory. Phys. Fluids 23, 19351937.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.
Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 88, 659684.
Williams, R. M. & Paulson, C. A. 1977 Microscale temperature and velocity spectra in the atmospheric boundary layer. J. Fluid Mech. 83, 547567.
Woodruff, S. L. & Rubinstein, R. 2006 Multiple-scale perturbation analysis of slowly evolving turbulence. J. Fluid Mech. 565, 95103.
Xia, Y., Liu, Y., Vaithianathan, T. & Collins, L. R. 2010 Eddy Damped Quasi Normal Markovian theory for chemically reactive scalars in isotropic turbulence. Phys. Fluids 22, 045103.
Yeung, P. K. & Sreenivasan, K. R. 2013 Spectrum of passive scalars of high molecular diffusivity in turbulent mixing. J. Fluid Mech. 716, R14.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed