Skip to main content Accessibility help
×
Home

Swirl boundary layer and flow separation at the inlet of a rotating pipe

  • F.-J. Cloos (a1), D. Stapp (a1) and P. F. Pelz (a1)

Abstract

When a fluid enters a rotating circular pipe, an angular momentum or swirl boundary layer appears at the wall and interacts with the axial momentum boundary layer. In the centre of the pipe, the fluid is free of swirl and is accelerated due to boundary layer growth. Below a critical flow number, defined as the ratio of average axial velocity to circumferential velocity of the pipe, there is flow separation, known in the turbomachinery context as part load recirculation. To describe this phenomenon analytically, we extended boundary layer theory to a swirl boundary layer interacting with the axial momentum boundary layer. The solution of the resulting generalized von Kármán momentum equation takes into account the influence of the Reynolds number and flow number. We show the impact of swirl on the axial boundary layer and conduct experiments in which we vary Reynolds number, flow number and surface roughness to validate the analytical results. The extended boundary layer theory predicts a critical flow number which is analytically derived and validated. Below this critical flow number, separation is expected.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Swirl boundary layer and flow separation at the inlet of a rotating pipe
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Swirl boundary layer and flow separation at the inlet of a rotating pipe
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Swirl boundary layer and flow separation at the inlet of a rotating pipe
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: peter.pelz@fst.tu-darmstadt.de

References

Hide All
Bissonnette, L. & Mellor, G. 1974 Experiments on the behavior of an axisymmetric turbulent boundary layer with a sudden circumferential strain. J. Fluid Mech. 63, 369413.
Blasius, H. 1913 Das Ähnlichkeitsgesetz bei Reibungsforschungen in Flüssigkeiten. Forsch. Ing. 131, 141.
Börger, G.-G.1973 Optimierung von Windkanaldüsen für den Unterschallbereich. PhD thesis, Ruhr-Universität Bochum.
Borisenko, A. I., Kostikov, O. N. & Chumachenko, V. I. 1973 Experimental study of turbulent flow in a rotating channel. J. Engng Phys. Thermophys. 24, 770773.
Crane, C. & Burley, D. 1976 Numerical studies of laminar flow in ducts and pipes. J. Comput. Appl. Maths 2, 95111.
Imao, S., Itohi, M. & Harada, T. 1996 Turbulent characteristics of the flow in an axially rotating pipe. Intl J. Heat Fluid Flow 17 (5), 444451.
Imao, S., Zhang, Q. & Yamada, Y. 1989 The laminar flow in the developing region of a rotating pipe. Bull. JSME 32, 317323.
von Kármán, T. 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1 (4), 233252.
Kikuyama, K., Murakami, M. & Nishibori, K. 1983a Developement of three-dimensional turbulent boundary layer in an axially rotating pipe. Trans. ASME J. Fluids Engng 105, 154160.
Kikuyama, K., Murakami, M., Nishibori, K. & Maeda, K. 1983b Flow in an axially rotating pipe. A calculation of flow in the saturated region. Bull. JSME 26, 506513.
Kitoh, O. 1991 Experimental study of turbulent swirling flow in a straight pipe. J. Fluid Mech. 225, 445479.
Lavan, Z., Nielsen, H. & Fejer, A. A. 1969 Separation and flow reversal in swirling flows in circular ducts. Phys. Fluids 12, 17471757.
Levy, F.1927 Strömungserscheinungen in rotierenden Rohren. PhD thesis, Technischen Hochschule München.
Murakami, M. & Kikuyama, K. 1980 Turbulent flow in axially rotating pipes. Trans. ASME J. Fluids Engng 102, 97103.
Nagib, H., Lavan, Z., Fejer, A. A. & Wolf, L. J. 1973 Experimental study of turbulent flow in a rotating channel. Trans. ASME J. Engng Fluids 24, 770773.
Najafi, A. F., Saidi, M. H., Sadeghipour, M. S. & Souhar, M. 2005 Boundary layer solution for the turbulent swirling decay flow through a fixed pipe: SBR at the inlet. Intl J. Engng Sci. 43, 107120.
Nikuradse, J. 1932 Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. Forsch. Ing. 3, 136.
Nikuradse, J. 1933 Strömungsgesetze in rauhen Rohren. VDI Forsch. 361, 122.
Nishibori, K., Kikuyama, K. & Murakami, M. 1987 Laminarization of turbulent flow in the inlet region of an axially rotating pipe. Bull. JSME 30, 255262.
Oberlack, M. 1999 Similarity in non-rotating and rotating turbulent pipe flows. J. Fluid Mech. 379, 122.
Piquet, J. 1999 Turbulent Flows. Springer.
Pohlhausen, K. 1921 Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. Z. Angew. Math. Mech. 1 (4), 252268.
Pope, S. B. 2011 Turbulent Flows. Cambridge University Press.
Reich, G.1988 Strömung und Wärmeübertragung in einem axial rotierenden Rohr. PhD thesis, Technischen Hochschule Darmstadt.
Schlichting, H. 1953 Die laminare Strömung um einen axial angeströmten rotierenden Drehkörper. Ing.-Arch. 4, 227244.
Schlichting, H. 1970 Boundary-Layer Theory. McGraw Hill.
Schubauer, G. B. & Tchen, C. M. 1961 Turbulent Flow. Princeton University Press.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.
Stratford, B. S. 1959 The prediction of separation of the turbulent boundary layer. J. Fluid Mech. 5, 116.
Weigand, B. & Beer, H. 1992 Fluid flow and heat transfer in an axially rotating pipe: the rotational entrance. In Rotating Machinery (Transport Phenomena) (ed. Kim, J. H. & Yang, W. J.), pp. 325340. Hemisphere.
Weigand, B. & Beer, H. 1994 On the universaility of the velocity profiles of a turbulent flow in an axially rotating pipe. Appl. Sci. Res. 52, 115132.
White, A. 1964 Flow of a fluid in an axially rotating pipe. J. Mech. Engng Sci. 6, 4752.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Swirl boundary layer and flow separation at the inlet of a rotating pipe

  • F.-J. Cloos (a1), D. Stapp (a1) and P. F. Pelz (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed