Skip to main content Accessibility help
×
Home

Surprising consequences of ion conservation in electro-osmosis over a surface charge discontinuity

  • ADITYA S. KHAIR (a1) and TODD M. SQUIRES (a1)

Abstract

A variety of microfluidic technologies utilise electrokinetic transport over rigid surfaces possessing rapid variations in charge. Here, as a paradigmatic model system for such situations, we consider electro-osmosis past a flat plate possessing a discontinuous jump in surface charge. Although the problem is relatively simple to pose, our analysis highlights a number of interesting and somewhat surprising features. Notably, the standard assumption that the electric field outside the diffuse screening layer is equal to the uniform applied field leads to a violation of ion conservation, since the applied field drives an ionic surface current along the diffuse layer downstream of the jump, whereas there is zero surface current upstream. Instead, at the surface charge discontinuity, field lines are drawn into the diffuse layer to supply ions from the bulk electrolyte, thereby ensuring ion conservation. A simple charge conservation argument reveals that the length-scale over which this process occurs is of the order of the ratio of surface-to-bulk electrolyte conductivities, LHsb. For a highly charged surface, LH can be several orders of magnitude greater than the Debye screening length λD, which is typically nanometres in size. Remarkably, therefore, nano-scale surface conduction may cause micrometre-scale gradients in the bulk electric field. After a distance O(LH) downstream, the bulk field ‘heals’ and is once again equal to the applied field. Scaling all distances with the ‘healing length’ LH yields a universal set of equations for the bulk field and fluid flow, which are solved numerically. Finally, we discuss the role of surface conduction in driving a non-uniform ion distribution, or concentration polarization, in the bulk electrolyte.

Copyright

References

Hide All
Ajdari, A. 1995 Electro-osmosis on inhomogeneously charge surfaces. Phys. Rev. Lett. 75, 755.
Anderson, J. L. 1985 Effect of non-uniform zeta potential on particle movement in electric fields. J. Colloid Interface Sci. 105, 45.
Anderson, J. L. & Idol, W. K. 1985 Electroosmosis through pores with nonuniformly charged walls. Chem. Engng Commun. 38, 93.
Bazant, M. Z. & Squires, T. M. 2004 Induced-charge electrokinetic phenomena: theory and microfluidic applications. Phys. Rev. Lett. 92, 066010.
Bikerman, J. J. 1940 Electrokinetic equations and surface conductance, a survery of the diffuse double layer theory of colloidal solutions. Trans. Faraday Soc. 36, 154.
Chu, K. T. & Bazant, M. Z. 2007 Nonlinear electrochemical relaxation around conductors. Phys. Rev. E 74, 011501.
Deryaguin, B. V. & Dukhin, S. S. 1969 Theory of surface conductance. Colloid J. USSR 31, 277.
Dukhin, S. S. 1993 Non-equilibrium electric surface phenomena. Adv. Colloid Interface Sci. 44, 1.
Dukhin, S. S. & Deryaguin, B. V. 1974 Electrokinetic phenomena. Surface and Colloid Science 7 (ed. Matijevic, E.). Wiley.
Gamayunov, N. I., Murtsovkin, V. A. & Dukhin, A. S. 1986 Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles. Colloid J. USSR 48, 197.
Gangwal, S., Cayre, O. J., Bazant, M. Z. & Velev, O. D. 2008 Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 100, 058302.
Ghosal, S. 2006 Electrokinetic flow and dispersion in capillary electrophoresis. Annu. Rev. Fluid Mech. 38, 309.
González, A., Ramos, A., Green, N. G., Castellanos, A. & Morgan, H. 2000 Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis. Phys. Rev. E 61, 4019.
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. 2006 Electrokinetic energy conversion efficiency in nanofluidic channels. Nano. Lett. 6, 2232.
van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. 2007 Power generation by pressure-driven transport of ions in nanofluidic channels. Nano. Lett. 7, 1022.
Khair, A. S. & Squires, T. M. 2008 Fundamental aspects of concentration polarization arising from non-uniform electrokinetic transport. Phys. Fluids 20, 087102.
Khandurina, J. & Guttman, A. 2003 Microscale separation and analysis. Curr. Opin. Chem. Biol. 7, 595.
Kilic, M. S., Bazant, M. Z. & Ajdari, A. 2007 Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 75, 021502.
Kim, S. J., Wang, Y. C., Lee, J. H., Jang, H. & Han, J. 2007 Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys. Rev. Lett. 99, 044501.
Levitan, J. A., Devasenathipathy, S., Studer, V., Ben, Y., Thorsen, T., Squires, T. M. & Bazant, M. Z. 2005 Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel. Colloids Surfaces A 267, 122.
Long, D. & Ajdari, A. 1998 Symmetry properties of the electrophoretic motion of patterned colloidal particles. Phys. Rev. Lett. 81, 1529.
Long, D., Stone, H. A. & Ajdari, A. 1999 Electroosmotic flows created by surface defects in capillary electrophoresis. J. Colloid Interface Sci. 212, 338.
Lyklema, J. 1995 Fundamentals of Interface and Colloid Science. Volume II: Solid–Liquid Interfaces. Academic.
Murtsovkin, V. A. 1996 Nonlinear flows near polarized disperse particles. Colloid J. Russ. Acad. Sci. 53, 947.
O'Brien, R. W. 1983 The solution of the electrokinetic equations for colloidal particles with thin double layers. J. Colloid Interface Sci. 92, 204.
O'Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 1607.
Pennathur, S., Eijkel, J. C. T. & van der Berg, A. 2007 Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab. Chip 7, 1234.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1992 Numerical Recipes in FORTRAN, 2nd edn.Cambridge University Press.
Prieve, D. C, Anderson, J. L., Ebel, J. P. & Lowell, M. E. 1984 Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 148, 247.
Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. 1998 AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D 31, 2338.
Reuss, F. 1809 Sur un nouvel effet de le électricité glavanique. Mém. Soc. Imp. Nat. Mosc. 2, 327.
Rice, C. & Whitehead, R. 1965 Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017.
Russel, W. B., Saville, D. A. & Schowalter, W. R. 1989 Colloidal Dispersions. Cambridge University Press.
Soni, G., Squires, T. M. & Meinhart, C. D. 2007 Nonlinear effects in induced charge electroosmosis. Proc. IMECE2007, Paper IMECE2007-41468, 2007 ASME International Mechanical Engineering Congress and Exposition, Seattle, WA, USA.
Squires, T. M. & Bazant, M. Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217.
Squires, T. M. & Bazant, M. Z. 2006 Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65.
Squires, T. M. & Quake, S. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381.
Storey, B. D., Edwards, L. R., Sabri Kilic, M. & Bazant, M. Z. 2008 Steric effects on ac electro-osmosis in dilute electrolytes. Phys. Rev. E 77, 036317.
Stroock, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Ismagilov, R. F. & Whitesides, G. M. 2000 Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett. 84 (15), 3314.
Teubner, M. 1982 The motion of charge colloidal particles in electric fields. J. Chem. Phys. 76, 5564.
Wang, Y., Stevens, A. & Han, J. 2005 Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293.
Yariv, E. 2004 Electro-osmotic flow near a surface charge discontinuity. J. Fluid Mech. 521, 181.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed