Skip to main content Accessibility help

Substantial drag reduction in turbulent flow using liquid-infused surfaces

  • Tyler Van Buren (a1) and Alexander J. Smits (a1)


Experiments are presented that demonstrate how liquid-infused surfaces can reduce turbulent drag significantly in Taylor–Couette flow. The test liquid was water, and the test surface was composed of square microscopic grooves measuring $100~\unicode[STIX]{x03BC}\text{m}$ to $800~\unicode[STIX]{x03BC}\text{m}$ , filled with alkane liquids with viscosities from 0.3 to 1.4 times that of water. We achieve drag reduction exceeding 35 %, four times higher than previously reported for liquid-infused surfaces in turbulent flow. The level of drag reduction increased with viscosity ratio, groove width, fluid area fraction and Reynolds number. The optimum groove width was given by $w^{+}\approx 35$ .


Corresponding author

Email address for correspondence:


Hide All
Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A. & Choi, C. H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.
Arenas, I., Bernardini, M., Iungo, G. V. & Leonardi, S. 2016 Turbulent drag reduction over super-hydrophobic and liquid infused surfaces: dependence on the dynamics of the interface. In 31st Symposium on Naval Hydrodynamics. ONR.
Bocquet, L. & Lauga, E. 2011 A smooth future? Nat. Mater. 10 (5), 334337.
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.
Fu, M. K., Mohammadi, A., Van Buren, T., Stone, H. A., Smits, A. J., Hultmark, M., Arenas, A. & Leonardi, S. 2016 Understanding the effects of finite viscosity in super-hydrophobic and liquid infused surface drag reduction. In 31st Symposium on Naval Hydrodynamics. ONR.
Kim, P., Kreder, M. J., Alvarenga, J. & Aizenberg, J. 2013 Hierarchical or not? effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Lett. 13 (4), 17931799.
Martell, M. B., Perot, J. B. & Rothstein, J. P. 2009 Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620 (1), 3141.
Mohammadi, A. & Smits, A. J. 2016 Stability of two-immiscible-fluid systems: a review of canonical plane parallel flows. J. Fluids Engng 138 (10), 100803.
Ou, J., Perot, B. & Rothstein, J. P. 2004 Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 16 (12), 46354643.
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25 (11), 110815.
Park, H., Sun, G. & Kim, J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Poetes, R, Holtzmann, K., Franze, K. & Steiner, U. 2010 Metastable underwater superhydrophobicity. Phys. Rev. Lett. 105 (16), 166104.
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid-impregnated surfaces. Phys. Fluids 28 (1), 015103.
Samaha, M. A., Tafreshi, H. V. & Gad-el Hak, M. 2012 Influence of flow on longevity of superhydrophobic coatings. Langmuir 28 (25), 97599766.
Saranadhi, D., Chen, D., Kleingartner, J. A., Srinivasan, S., Cohen, R. E. & McKinley, G. H. 2016 Sustained drag reduction in a turbulent flow using a low-temperature leidenfrost surface. Sci. Adv. 2 (10), e1600686.
Schönecker, C., Baier, T. & Hardt, S. 2014 Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J. Fluid Mech. 740, 168195.
Solomon, B. R., Khalil, K. S. & Varanasi, K. K. 2014 Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30 (36), 1097010976.
Srinivasan, S., Choi, W., Park, K. C. L., Chhatre, S. S., Cohen, R. E. & McKinley, G. H. 2013 Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matt. 9 (24), 56915702.
Wong, T. S., Kang, S. H., Tang, S. K. Y., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477 (7365), 443447.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed