Skip to main content Accessibility help
×
Home

Study of asymmetrical shock wave reflection in steady supersonic flow

  • Jing Lin (a1), Chen-Yuan Bai (a1) and Zi-Niu Wu (a1)

Abstract

The asymmetrical Mach reflection configuration is studied analytically in this paper, using an asymmetrical model extended from a recent symmetrical model and accounting for the new features related to asymmetry of the two wedges. It is found that the two sliplines do not turn parallel to the incoming flow at the same horizontal location and the sonic throat locates at the position where the difference of slopes of the two sliplines vanishes. This allows us to define a new sonic throat compatibility condition essential to determine the size of the Mach stem. The present model gives the height of the Mach stem, declined angle of the Mach stem from vertical axis, sonic throat location and shape of all shock waves and sliplines. The accuracy of the model is checked by computational fluid dynamics (CFD) simulation. It is found that the Mach stem height is strongly dependent on asymmetry of the wedge angles and almost linearly dependent on the asymmetry of the wedge lower surface lengths. The Mach stem height is shown to be insensitive to the asymmetry of the horizontal positions of the two wedges. The mechanisms for these observations are explained. For instance, it is demonstrated that the Mach reflection configuration remains closely similar when there is horizontal shift of either wedge.

Copyright

Corresponding author

Email address for correspondence: ziniuwu@tsinghua.edu.cn

References

Hide All
Azevedo, D. J. & Liu, C. S. 1993 Engineering approach to the prediction of shock patterns in bounded high-speed flows. AIAA J. 31, 8390.10.2514/3.11322
Bai, C. Y. & Wu, Z. N. 2017 Size and shape of shock waves and slipline for Mach reflection in steady flow. J. Fluid Mech. 818, 116140.10.1017/jfm.2017.139
Ben-Dor, G., Ivanov, M., Vasilev, E. I. & Elperin, T. 2002 Hysteresis processes in the regular reflection–Mach reflection transition in steady flows. Prog. Aerosp. Sci. 38, 347387.10.1016/S0376-0421(02)00009-X
Chpoun, A. & Lengrand, J. C. 1997 Confirmation experimentale d’un phenomene d’hysteresis lors de l’interaction de deux chocs obliques de familles differentes. C. R. Acad. Sci. Paris 324 (1), 18.
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Wiley-Interscience.
Dewey, J. M. & Barss, T. 1996 The shape of the Mach stem. In Proceedings of 12th International Mach Reflection Symposium. Pilanesberg, South Africa, pp. 263274.
Dewey, J. M. & McMillin, D. J. 1985a Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 1. Observations. J. Fluid Mech. 152, 4966.10.1017/S0022112085000568
Dewey, J. M. & McMillin, D. J. 1985b Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 2. Analysis. J. Fluid Mech. 152, 6781.10.1017/S002211208500057X
Gao, B. & Wu, Z. N. 2010 A study of the flow structure for Mach reflection in steady supersonic flow. J. Fluid Mech. 656, 2950.10.1017/S0022112010001011
Guan, X. K, Bai, C. Y. & Wu, Z. N. 2018 Steady Mach reflection with two incident shock waves. J. Fluid Mech. 855, 882909.10.1017/jfm.2018.676
Henderson, L. F. & Lozzi, A. 1975 Experiments on transition of Mach reflection. J. Fluid Mech. 68, 139155.10.1017/S0022112075000730
Hornung, H. G. 2014 Mach reflection in steady flow. I. Mikhail Ivanov’s contributions, II. Caltech stability experiments. In AIP Conference Proceedings, vol. 1628, pp. 13841393. AIP Publishing.
Hornung, H. G. & Mouton, C. A. 2008 Some more on transition between regular and Mach reflection of shock waves. In 38th Fluid Dynamics Conference and Exhibit, Washington, USA, AIAA.
Hornung, H. G., Oertel, H. & Sandeman, R. J. 1979 Transition to Mach reflection of shock waves in steady and pseudo-steady flows with and without relaxation. J. Fluid Mech. 90, 541560.10.1017/S002211207900238X
Hornung, H. G. & Robinson, M. L. 1982 Transition from regular to Mach reflection of shock waves. Part 2. The steady-flow criterion. J. Fluid Mech. 123, 155164.10.1017/S0022112082003000
Ivanov, M. S., Ben-Dor, G., Elperin, T., Kudryavtsev, A. N. & Khotyanovsky, D. V. 2002 The reflection of asymmetric shock waves in steady flows: a numerical investigation. J. Fluid Mech. 496, 7187.10.1017/S0022112002001799
Kudryavstsev, A. N., Khotyanosky, D. V. & Ivanov, M. S 2000 Numerical simulation of asymmetrical steady shock wave interactions. In European Congress on Computational Methods in Applied Science and Engineering, Barcelona, Spain.
Li, H. & Ben-Dor, G. 1996 Oblique-shock/expansion–fan interaction – analytical solution. AIAA J. 34, 418421.10.2514/3.13081
Li, H. & Ben-Dor, G. 1997 A parametric study of Mach reflection in steady flows. J. Fluid Mech. 341, 101125.10.1017/S0022112097005375
Li, H., Ben-Dor, G. & Han, Z. Y. 1994 Modification on the Whitham theory for analyzing the reflection of weak shock waves over small wedge angles. Shock Waves 4, 4145.10.1007/BF01414631
Li, H., Chpoun, A. & Ben-Dor, G. 1999 Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows. J. Fluid Mech. 390, 2543.10.1017/S0022112099005169
Mouton, C. A.2008 Transition between regular reflection and Mach reflection in the dual-solution domain. PhD thesis, California Institute of Technology.10.1007/978-3-540-85181-3_100
Mouton, C. A. & Hornung, H. G. 2007 Mach stem height and growth rate predictions. AIAA J. 45, 19771987.10.2514/1.27460
Mouton, C. A. & Hornung, H. G. 2008 Experiments on the mechanism of inducing transition between regular and Mach reflection. Phys. Fluids 20, 126103.10.1063/1.3042261
Olim, M. & Dewey, J. M. 1992 A revised three-shock solution for the Mach reflection of weak shocks (1. 1 < Mi < 1. 5). Shock Waves 2, 167176.10.1007/BF01414639
Roe, P. L. 1986 Characteristic based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18, 337365.10.1146/annurev.fl.18.010186.002005
Roy, S. & Rajesh, G. 2017 Analytical prediction of Mach stem height for asymmetric wedge reflection in 2-D steady flows. In 31st International Symposium on Shock Waves, Nagoya, Japan.
Schmisseur, J. D. & Gaitonde, D. V. 2011 Numerical simulation of Mach reflection in steady flows. Shock Waves 21, 499509.10.1007/s00193-011-0335-x
Sudani, N., Sato, M., Karasawa, T., Noda, J., Tate, A. & Watanabe, M. 2002 Irregular effects on the transition from regular to Mach reflection of shock waves in wind tunnel flows. J. Fluid Mech. 459, 167185.10.1017/S0022112002007966
Tan, L. H., Ren, Y. X. & Wu, Z. N. 2006 Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows. J. Fluid Mech. 546, 341362.10.1017/S0022112005007123
Tao, Y., Liu, W., Fan, X., Xiong, B., Yu, J. & Sun, M. 2017 A study of the asymmetric shock reflection configurations in steady flows. J. Fluid Mech. 825, 115.10.1017/jfm.2017.280
von Neumann, J.1943 Oblique reflection of shock. Explos. Res. Rep. 12. Navy Dept., Bureau of Ordinance, Washington, DC.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed