Skip to main content Accessibility help
×
Home

Structure of bubble plumes in linearly stratified environments

  • Takashi Asaeda (a1) (a2) and Jörg Imberger (a1)

Abstract

Bubble plumes in a linearly stratified ambient fluid are studied. Four well-defined flow regions were observed: an upward-moving bubble core, an inner plume consisting of a mixture of bubbles and relatively dense fluid, an annular downdraught and beyond that a horizontal intrusion flow. Depending on the gas flow rate with respect to the stratification, three types of intrusions were documented. At large gas flow rates a single intrusion was observed. As the gas flow rate was decreased, the buoyancy flux was insufficient to carry the lower fluid to the surface and a stack of intrusions were formed. At very low gas flow rates the intrusions became unsteady. The transition between these three regimes was observed to occur at critical values of the parameters N3H4/(QBg), QBg/ (4πα2u3sH), and H/HT, where N is the buoyancy frequency, H is the water depth, HT is equal to H + HA, HA being the atmospheric pressure head, QB is the gas flow rate at the bottom, g the acceleration due to gravity, α the entrainment coefficient and us the differential between the bubble and the average water velocity commonly called the slip velocity. The height between intrusions was found to scale with the Ozmidov length (QBg/N3)¼, the plunge point entrainment with the inner plume volume flux ($(Q_0 g)^{\frac{3}{4}} N^{-\frac{5}{4}}$ and the radial distance to the plunge point with (Q0g/N3)¾, where Q0 is the gas flow rate at the free surface.

These results were used to construct a double annular plume model which was used to investigate the efficiency of conversion of the input bubble energy to potential energy of the stratification; the efficiency was found to first increase, reach a maximum, then decrease with decreasing gas flow rate. This agreed well with the results from the laboratory experiments.

Copyright

References

Hide All
Asaeda, T. & Imberger, J. 1989 Behaviours of bubble plumes in a linear stratification. Proc. JSCE 411, 5562 (in Japanese.)
Asaeda, T., Imberger, J. & Ikeda, H. 1990 Bubble plume behaviours in two-layered environments. Res. Rep. Dept Found. Engng & Const. Engng, Saitama Univ., vol. 20, pp. 1932.
Asaeda, T., Nakai, M. & Tamai, N. 1989 Spreading rate of dense jet impinging on the free surface. Proc. JSCE 411, 109116 (in Japanese.)
Baines, W. D. & Leitch, A. M. 1992 Destruction of stratification by a bubble plume. J. Hydraul. Engng ASCE 118, 559577.
Browand, F. K., Guyomar, D. & Yoon, S. C. 1987 The behavior of a turbulent front in a stratified fluid: Experiments with an oscillating grid. J. Geophys. Res. 92, 53295341.
Bulson, P. S. 1961 Current production by an air curtain in deep water. Dock Harbour Authority 42, 1522.
Cheung, F. B. & Epstein, M. 1987 Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surface. Nucl. Engng Design 99, 93100.
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.
Davis, J. M. 1980 Destratification of reservoirs-a design approach for perforated-pipe compressed-air systems. Water Services 84, 497504.
Ditmars, J. D. & Cederwall, K. 1974 Analysis of air-bubble plumes. In Proc. 14th Conf. Coastal Engng, Copenhagen, Ch. 128, pp. 22092226. ASCE.
Fanneløp, T. K., Hirschberg, S. & Küffer, J. 1991 Surface current and recirculating cells generated by bubble curtains and jets. J. Fluid Mech. 229, 629657.
Fischer, H. B., List, E. G., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic.
Goosens, L. H. J. 1979 Reservoir destratification with bubble columns. Thesis, Delft University. The Netherlands.
Goosens, L. H. J. & Van Pagee, J. A. 1977 Modelling of the near field due to air injection in big reservoirs. Proc. 17th Cong. IAHR, vol. 1, pp. 551560.
Head, M. J. 1983 The use of miniature four-electrode conductivity probes for high resolution measurement of turbulent density or temperature variations in salt-stratified water flows. Ph.D. dissertation, University of California, San Diego.
Hussain, N. A. & Narang, B. S. 1984 Simplified analysis of air-bubble plumes in moderately stratified environments. Trans. ASME C: 106, 543551.
Imberger, J. & Ivey, G. N. 1993 Boundary mixing in stratified reservoirs. J. Fluid Mech. 248, 477491.
Imberger, J. & Patterson, J. C. 1990 Physical limnology. Adv. Appl. Mech. 27, 303475.
Ivey, G. N. & Corcos, G. M. 1982 Boundary mixing in a stratified fluid. J. Fluid Mech. 121, 126.
Kobus, H. E. 1968 Analysis of the flow induced by an air-bubble system. In Proc. 11th Conf. Coastal Engng, London, pp. 10161031. ASCE.
Kobus, H. 1973 Wasser und Abwasser. Erich Schmidt.
Kranenburg, C. 1979 Destratification of lakes using bubble columns. J. Hydraul. Engng, Proc. ASCE 105 (HY4), 333349.
Lemckert, C. J. & Imberger, J. 1992a Energetic bubble plumes in arbitrary stratification. J. Hydraul. Engng, ASCE (in press).
Lemckert, C. J. & Imberger, J. 1992b Axisymmetric intrusive gravity currents in linearly stratified fluids. J. Hydraul. Engng, ASCE (in press).
List, E. J. 1982 Mechanism of turbulent jets and plumes. In Turbulent Buoyant Jets and Plumes (ed. W. Rodi), pp. 162. Pergamon.
Matsunashi, G. & Miyanaga, Y. 1988 Basic study of air bubble plume used for measure against water quality. Abiko Lab. Rep. U87066, p. 39 (in Japanese.)
Matsunashi, G. & Miyanaga, Y. 1990 A field study on the characteristics of air bubble plume in a reservoir. J. Hydrosci. Hydraul. Engng, Proc. JSCE 9, 6578.
Maxworthy, T. & Monismith, S. G. 1988 Differential mixing in a stratified fluid. J. Fluid Mech. 189, 571598.
McDougall, T. J. 1978 Bubble plumes in stratified environments. J. Fluid Mech. 85, 655672.
Milgram, J. H. 1983 Mean flow in round bubble plumes. J. Fluid Mech. 133, 345376.
Morton, B. R. 1962 Coaxial turbulent jets. Intl J. Heat Mass Transfer 5, 955965.
Ozmidov, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR, Atmos. Ocean Phys. 1, 493497. (Engl. Transl.)
Rowe, R. D., Poon, J. Y. C. & Laureshen, C. J. 1989 A simple method for predicting bubble plume properties. Proc. 23rd Intl Assoc. Hydr. Res. Ottawa, D-2330.
Schladow, S. G. 1992 Bubble plume dynamics in a stratified medium and the implications for water quality amelioration in lakes. Wat. Resour. Res. 28, 313321.
Sun, T. Y. & Faeth, G. M. 1986 Structure of turbulent bubbly jets-1. Methods and centreline properties. Intl J. Multiphase Flow 12, 99114.
Tacke, K. H., Schubert, H. G., Weber, D. J. & Schwerdtfeger, K. 1985 Characteristics of round vertical gas bubble jets. Metall. Trans. B 16, 263275.
Wilkinson, D. L. 1979 Two-dimensional bubble plumes. J. Hydraul. Div. ASCE 105 (HY2), 139154.
Zic, K. & Stephan, H. G. 1990 Analysis and simulation of mixing of stratified lakes or reservoirs by air bubble plumes. Project Rep. 305, St Anthony Falls Hydraulic Laboratory.
Zic, K. & Stephan, H. G. & Ellis, C. 1992 Laboratory study of bubble plume destratification. J. Hydraul. Res. 30, 727.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed