Skip to main content Accessibility help

Strong-field spherical dynamos

  • Emmanuel Dormy (a1)


Numerical models of the geodynamo are usually classified into two categories: dipolar modes, observed when the inertial term is small enough; and multipolar fluctuating dynamos, for stronger forcing. We show that a third dynamo branch corresponding to a dominant force balance between the Coriolis force and the Lorentz force can be produced numerically. This force balance is usually referred to as the strong-field limit. This solution coexists with the often described viscous branch. Direct numerical simulations exhibit a transition from a weak-field dynamo branch, in which viscous effects set the dominant length scale, and the strong-field branch, in which viscous and inertial effects are largely negligible. These results indicate that a distinguished limit needs to be sought to produce numerical models relevant to the geodynamo and that the usual approach of minimising the magnetic Prandtl number (ratio of the fluid kinematic viscosity to its magnetic diffusivity) at a given Ekman number is misleading.


Corresponding author

Email address for correspondence:


Hide All
Aubert, J. 2005 Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 5367.
Christensen, U. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 197.
Christensen, U., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G., Honkura, Y., Jones, C., Kono, M. et al. 2001 A numerical dynamo benchmark. Phys. Earth Planet. Inter. 128, 2534.
Christensen, U., Olson, P. & Glatzmaier, G. 1999 Numerical modelling of the geodynamo: a systematic parameter study. Geophys. J. Intl 138, 393409.
Dormy, E.1997 Modélisation numérique de la dynamo terrestre. PhD thesis, IPGP.
Dormy, E. & Soward, A. M.(Eds) 2007 Mathematical Aspects of Natural Dynamos. CRC.
Dormy, E. & Le Mouël, J.-L. 2008 Geomagnetism and the dynamo: where do we stand? C. R. Acad. Sci. Paris 9, 711720.
Dormy, E. 2011 Stability and bifurcation of planetary dynamo models. J. Fluid Mech. 688, 14.
Fearn, D. R. 1979a Thermally driven hydromagnetic convection in a rapidly rotating sphere. Proc. R. Soc. Lond. A 369 (1737), 227242.
Fearn, D. R. 1979b Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn. 14 (1), 103126.
Fearn, D. R. 1998 Hydromagnetic flow in planetary cores. Rep. Prog. Phys. 61, 175235.
Fearn, D. R., Roberts, P. H. & Soward, A. M. 1986 Convection, stability and the dynamo. In Energy Stability and Convection (ed. Galdi, G. P.  & Straughan, B.), Proceedings of the Workshop, Capri, Longman Scientific & Technical.
Goudard, L. & Dormy, E. 2008 Relations between the dynamo region geometry and the magnetic behavior of stars and planets. Europhys. Lett. 83, 59001.
Gubbins, D., Willis, A. & Sreenivasan, B. 2007 Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys. Earth Planet. Inter. 162, 256260.
Jones, C. A. 2011 Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43, 583614.
Jones, C. A., Mussa, A. I. & Worland, S. J. 2003 Magnetoconvection in a rapidly rotating sphere: the weak-field case. Proc. R. Soc. Lond. A 459, 773797.
Kutzner, C. & Christensen, U. 2002 From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Inter. 131, 2945.
Moffatt, H. K. 1978 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Morin, D. & Dormy, E. 2009 The dynamo bifurcation in rotating spherical shells. Intl J. Mod. Phys. B 23, 54675482.
Olson, P., Glatzmaier, G. & Coe, R. 2011 Complex polarity reversals in a geodynamo model. Earth Planet. Sci. Lett. 304, 168179.
Oruba, L. & Dormy, E. 2014a Predictive scaling laws for spherical rotating dynamos. Geophys. J. Intl 198, 828847.
Oruba, L. & Dormy, E. 2014b Transition between viscous dipolar and inertial multipolar dynamos. Geophys. Res. Lett. 41 (20), 71157120.
Proctor, M. R. E. 1994 Convection and magnetoconvection. In Lectures on Solar and Planetary Dynamos (ed. Proctor, M. R. E. & Gilberts, A. D.). Cambridge University Press.
Roberts, P. H. 1978 Magneto-convection in a rapidly rotating fluid. In Rotating Fluids in Geophysics (ed. Roberts, P. H. & Soward, A. M.). Academic.
Roberts, P. H. 1988 Future of geodynamo theory. Geophys. Astrophys. Fluid Dyn. 44, 331.
Roberts, P. H. & Soward, A. M. 1992 Dynamo theory. Annu. Rev. Fluid Mech. 24, 459512.
Schrinner, M., Petitdemange, L., Dormy, E. & Schrinner, M. 2012 Dipole collapse and dynamo waves in global direct numerical simulations. Astrophys. J. 752, 121.
Simitev, R. & Busse, F. 2009 Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Eur. Phys. Lett. 85, 19001.
Soward, A. M. S. 1979 Convection driven dynamos. Phys. Earth Planet. Inter. 20, 134151.
Sreenivasan, B. & Jones, C. A. 2011 Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 530.
Sreenivasan, B., Sahoo, S. & Jones, C. A. 2014 The role of buoyancy in polarity reversals of the geodynamo. Geophys. J. Intl 199, 16981708.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed