Skip to main content Accessibility help
×
Home

Streamwise and doubly-localised periodic orbits in plane Poiseuille flow

  • Stefan Zammert (a1) and Bruno Eckhardt (a1) (a2)

Abstract

We study localised exact coherent structures in plane Poiseuille flow that are relative periodic orbits. They are obtained from extended states in smaller periodically continued domains, by increasing the length to obtain streamwise localisation and then by increasing the width to achieve spanwise localisation. The states maintain the travelling wave structure of the extended states, which is then modulated by a localised envelope on larger scales. In the streamwise direction, the envelope shows exponential localisation, with different exponents on the upstream and downstream sides. The upstream exponent increases linearly with Reynolds number $\mathit{Re}$ , but the downstream exponent is essentially independent of $\mathit{Re}$ . In the spanwise direction the decay is compatible with a power-law localisation. As the width increases the localised state undergoes further bifurcations which add additional unstable directions, so that the edge state, the relative attractor on the boundary between the laminar and turbulent motions, in the system becomes chaotic.

Copyright

Corresponding author

Email address for correspondence: stefan.zammert@physik.uni-marburg.de

References

Hide All
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localised solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502.
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.
Barkley, D. & Tuckerman, L. 2005 Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94, 014502.
Brand, E. & Gibson, J. F. 2014 A doubly-localised equilibrium solution of plane Couette flow. J. Fluid Mech. 750, R1.
Carlson, D. R., Widnall, S. E. & Peeters, M. F. 1982 A flow-visualization study of transition in plane Poiseuille flow. J. Fluid Mech. 121, 487505.
Chantry, M., Willis, A. P. & Kerswell, R. R. 2013 The genesis of streamwise-localised solutions from globally periodic travelling waves in pipe flow. Phys. Rev. Lett. 112, 164501.
Dauchot, O. & Daviaud, F. 1995 Finite amplitude perturbation and spots growth mechanism in plane Couette flow. Phys. Fluids 7, 335.
Dijkstra, H., Wubs, F. W., Cliffe, A. K., Doedel, E., Dragomirescu, I. F., Eckhardt, B., Gelfgat, A. Yu., Hazel, A. L., Lucarini, V., Salinger, A. G., Phipps, E. T., Sanchez-Umbria, J., Schuttelaars, H., Tuckerman, L. S. & Thiele, U. 2014 Numerical bifurcation methods and their applicaton to fluid dynamics: analysis beyond simulation. Commun. Comput. Phys. 15, 145.
Duguet, Y. & Schlatter, P. 2013 Oblique laminar–turbulent interfaces in plane shear flows. Phys. Rev. Lett. 110, 034502.
Duguet, Y., Schlatter, P. & Henningson, D. S. 2009 Localised edge states in plane Couette flow. Phys. Fluids 21, 111701.
Duguet, Y., Schlatter, P. & Henningson, D. S. 2010 Formation of turbulent patterns near the onset of transition in plane Couette flow. J. Fluid Mech. 228, 119129.
Ehrenstein, U. & Koch, W. 1991 Three-dimensional wavelike equilibrium states in plane Poiseuille flow. J. Fluid Mech. 121, 111148.
Gibson, J. F.2012 Channelflow: a spectral Navier–Stokes simulator in C $++$ . Tech. Rep., University of New Hampshire.
Gibson, J. F. & Brand, E. 2014 Spanwise-localised solutions of planar shear flows. J. Fluid Mech. 745, 2561.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.
Guennebaud, G. & Jacob, B. et al. 2010 Eigen v3, http://eigen.tuxfamily.org.
Hegseth, J. 1996 Turbulent spots in plane Couette flow. Phys. Rev. E 54, 49154923.
Henningson, D., Spalart, P. & Kim, J. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary-layer flow. Phys. Fluids 30, 2914.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Khapko, T., Duguet, Y., Kreilos, T., Schlatter, P., Eckhardt, B. & Henningson, D. S. 2014 Complexity of localised coherent structures in a boundary-layer flow. Eur. Phys. J. E 37, 32.
Khapko, T., Kreilos, T., Schlatter, P., Duguet, Y., Eckhardt, B. & Henningson, D. S. 2013 Localised edge states in the asymptotic suction boundary layer. J. Fluid Mech. 717, R6.
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.
Kreilos, T., Veble, G., Schneider, T. M. & Eckhardt, B. 2013 Edge states for the turbulence transition in the asymptotic suction boundary layer. J. Fluid Mech. 726, 100122.
Kuznetsov, Y. A. 1998 Elements of Applied Bifurcation Theory. Springer.
Lagha, M. & Manneville, P. 2007 Modeling of plane Couette flow. I. Large scale flow around turbulent spots. Phys. Fluids 19, 094105.
Lemoult, G., Aider, J.-L. & Wesfreid, J. E. 2013 Turbulent spots in a channel: large-scale flow and self-sustainability. J. Fluid Mech. 731, R1.
Lemoult, G., Gumowski, K., Aider, J.-L. & Wesfreid, J. E. 2014 Turbulent spots in channel: an experimental study large-scale flow, inner structure and low order model. Eur. Phys. J. E 37, 25.
Lundbladh, A. & Johansson, A. V. 1991 Direct simulation of turbulent spots in plane Couette flow. J. Fluid Mech. 229, 499516.
Manneville, P. 2009 Spatiotemporal perspective on the decay of turbulence in wall-bounded flows. Phys. Rev. E 79, 025301.
Marinc, D., Schneider, T. M. & Eckhardt, B. 2010 Localised edge states for the transition to turbulence in shear flows. In Seventh IUTAM Symp. Laminar–Turbulent Transit. (ed. Schlatter, P. & Henningson, D. S.), IUTAM Bookseries, vol. 18, pp. 253258. Springer.
Mellibovsky, F., Meseguer, A., Schneider, T. & Eckhardt, B. 2009 Transition in localised pipe flow turbulence. Phys. Rev. Lett. 103, 054502.
Melnikov, K., Kreilos, T. & Eckhardt, B. 2014 Long wavelength instability of coherent structures in plane Couette flow. Phys. Rev. E 89, 043088.
Moxey, D. & Barkley, D. 2010 Distinct large-scale turbulent-laminar states in transitional pipe flow. Proc. Natl Acad. Sci. USA 107, 80918096.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Nagata, M. 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55, 20232025.
Nagata, M. & Deguchi, K. 2013 Mirror-symmetric exact coherent states in plane Poiseuille flow. J. Fluid Mech. 735, R4.
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.
Price, T., Brachet, M. & Pomeau, Y. 1993 Numerical characterization of localised solutions in plane Poiseuille flow. Phys. Fluids A 5, 762.
Schmiegel, A.1999 Transition to turbulence in linearly stable shear flows. PhD thesis, Marburg.
Schneider, T. M., Gibson, J. F. & Burke, J. 2010a Snakes and ladders: localised solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501.
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar–turbulent boundary in plane Couette flow. Phys. Rev. E 78, 037301.
Schneider, T. M., Marinc, D. & Eckhardt, B. 2010b Localised edge states nucleate turbulence in extended plane Couette cells. J. Fluid Mech. 646, 441451.
Schumacher, J. & Eckhardt, B. 2001 Evolution of turbulent spots in a parallel shear flow. Phys. Rev. E 63, 046307.
Skufca, J., Yorke, J. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.
Tuckerman, L., Kreilos, T., Schrobsdorff, H., Schneider, T. M. & Gibson, J. F.2014 Turbulent-laminar patterns in plane Poiseuille flow. arXiv:1312.6783.
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517.
Wang, J., Gibson, J. F. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98, 204501.
Zammert, S. & Eckhardt, B. 2014a Periodically bursting edge states in plane Poiseuille flow. Fluid Dyn. Res. 46, 041419.
Zammert, S. & Eckhardt, B. 2014b A spotlike edge state in plane Poiseuille flow. Proc. Appl. Maths Mech. (submitted).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Streamwise and doubly-localised periodic orbits in plane Poiseuille flow

  • Stefan Zammert (a1) and Bruno Eckhardt (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed