Skip to main content Accessibility help
×
Home

A stochastic view of isotropic turbulence decay

  • MARCELLO MELDI (a1), PIERRE SAGAUT (a2) and DIDIER LUCOR (a2)

Abstract

A stochastic eddy-damped quasi-normal Markovian (EDQNM) approach is used to investigate self-similar decaying isotropic turbulence at a high Reynolds number (400 ≤ Reλ ≤ 104). The realistic energy spectrum functional form recently proposed by Meyers & Menevau (Phys. Fluids, vol. 20, 2008, p. 065109) is generalized by considering some of the model constants as random parameters, since they escape measure in most experimental set-ups. The induced uncertainty on the solution is investigated, building response surfaces for decay power-law exponents of usual physical quantities. Large-scale uncertainties are considered, the emphasis being put on Saffman and Batchelor turbulences. The sensitivity of the solution to initial spectrum uncertainties is quantified through probability density functions of the decay exponents. It is observed that the initial spectrum shape at very large scales governs the long-time evolution, even at a high Reynolds number, a parameter which is not explicitly taken into account in many theoretical works. Therefore, a universal asymptotic behaviour in which kinetic energy decays as t−1 is not detected. However, this decay law is observed at finite Reynolds numbers with low probability for some initial conditions.

Copyright

Corresponding author

Email address for correspondence: marcellomeldi@gmail.com

References

Hide All
Antonia, R. A., Smalley, R. J., Zhou, T., Anselmet, F. & Danaila, L. 2003 Similarity of energy structure functions in decaying homogeneous isotropic turbulence. J. Fluid Mech. 487, 245269.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. & Proudman, I. 1965 The large-scale structure of homogeneous turbulence. Phil. Trans. R. Soc. Lond. A 248, 369405.
Batchelor, G. K. & Townsend, A. A. 1948 Decay of turbulence in the final period. Proc. R. Soc. Lond. A 194, 527543.
Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L. & Antonia, R. A. 2006 Power law of decaying homogeneous isotropic turbulence at low Reynolds number. Phys. Rev. E 73, 066304.
Clark, T. T. & Zemach, C. 1998 Symmetries and the approach to statistical equilibrium in isotropic turbulence. Phys. Fluids 10 (11), 28462858.
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
Frenkel, A. L. 1984 Decay of homogeneous turbulence in three-range models. Phys. Lett. A 102 (7), 298302.
Frenkel, A. L. & Levich, E. 1983 Statistical helicity invariant and decay of inertial turbulence. Phys. Lett. A 98 (1–2), 2527.
Hinze, J. O. 1975 Turbulence. McGraw-Hill Series in Mechanical Engineering.
George, W. K. 1992 The decay of homogeneous isotropic turbulence. Phys. Fluids A 4 (7), 14921509.
Ghanem, R. G. & Spanos, P. 1991 Stochastic Finite Elements: A Spectral Approach. Springer.
Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.
Ko, J., Lucor, D. & Sagaut, P. 2008 Sensitivity of two-dimensional spatially developing mixing layers with respect to uncertain inflow conditions. Phys. Fluids 20 (7), 077102077120.
Kolmogorov, A. N. 1941 On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk. SSSR 31 (6), 538541.
Krogstad, P.Å. & Davidson, P. A. 2010 Is grid turbulence Saffman turbulence? J. Fluid Mech. 642, 373394.
Lavoie, P., Djenedi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.
Lucor, D., Meyers, J. & Sagaut, P. 2007 Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos. J. Fluid Mech. 585, 255279.
Meyers, J. & Menevau, C. 2008 A functional form for the energy spectrum parametrizing bottleneck and intermittency effects. Phys. Fluids 20 (6), 065109.
Mohamed, M. S. & LaRue, J. C. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press.
Oberlack, M. 2002 On the decay exponent of isotropic turbulence. Proc. Appl. Math. Mech. 1 (1), 294297.
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.
Saffman, P. J. 1967 a The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581593.
Saffman, P. J. 1967 b A note on decay of homogeneous turbulence. Phys. Fluids 10, 13491352.
Sagaut, P. & Cambon, C. 2008 Homogenous Turbulence Dynamics. Cambridge University Press.
Skrbrek, L. & Stalp, S. R. 2000 On the decay of homogeneous isotropic turbulence. Phys. Fluids 12 (8), 19972019.
Sobol, I. 1993 Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Exp. 1, 407414.
Speziale, C. G. & Bernard, P. S. 1992 The energy decay in self-preserving isotropic turbulence revisited. J. Fluid Mech. 241, 645667.
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421444.
Uberoi, M. S. 1963 Energy transfer in isotropic turbulence. Phys. Fluids 6 (8), 10481056.
Wang, H. & George, W. K. 2002 The integral scale in homogeneous isotropic turbulence. J. Fluid Mech. 459, 429443.
Warhaft, Z. & Lumley, J. L. 1978 An experimental study of the decay of temperature fluctuations in grid-generated turbulence. J. Fluid Mech. 88, 659684.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed