Skip to main content Accessibility help

Stochastic marine ice sheet variability

  • T. E. Mulder (a1), S. Baars (a2), F. W. Wubs (a2) and H. A. Dijkstra (a1)


It is well known that deterministic two-dimensional marine ice sheets can only be stable if the grounding line is positioned at a sufficiently steep, downward sloping bedrock. When bedrock conditions favour instabilities, multiple stable ice sheet profiles may occur. Here, we employ continuation techniques to examine the sensitivity of a two-dimensional marine ice sheet to stochastic noise representing short time scale variability, either in the accumulation rate or in the sea level height. We find that in unique regimes, the position of the grounding line is most sensitive to noise in the accumulation rate and can explain excursions observed in field measurements. In the multiple equilibrium regime, there is a strong asymmetry in transition probabilities between the different ice sheet states, with a strong preference to switch to the branch with a steeper bedrock slope.


Corresponding author

Email address for correspondence:


Hide All
Baars, S., Viebahn, J. P., Mulder, T. E., Kuehn, C., Wubs, F. W. & Dijkstra, H. A. 2017 Continuation of probability density functions using a generalized Lyapunov approach. J. Comput. Phys. 336, 627643.
Cowan, G. 1998 Statistical Data Analysis. Oxford University Press.
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M. & Gagliardini, O. 2016 The safety band of Antarctic ice shelves. Nat. Clim. Change 6 (5), 479482.
Ganopolski, A. & Rahmstorf, S. 2002 Abrupt glacial climate change due to stochastic resonance. Phys. Rev. Lett. 88, 038501–1–4.
Gardiner, C. 2009 Stochastic Methods: a Handbook for the Natural and Social Sciences, 4th edn. Springer Series in Synergetics, vol. 4. Springer.
Gomez, N., Mitrovica, J. X., Huybers, P. & Clark, P. U. 2010 Sea level as a stabilizing factor for marine-ice-sheet grounding lines. Nat. Geosci. 3 (12), 850853.
Greve, R. & Blatter, H. 2009 Dynamics of Ice Sheets and Glaciers. Springer.
Gudmundsson, G. H. 2012 Ice-shelf buttressing and the stability of marine ice sheets. Cryosph. Discuss. 6 (5), 39373962.
Hogg, A. E., Shepherd, A., Gourmelen, N. & Engdahl, M. 2016 Grounding line migration from 1992 to 2011 on Petermann Glacier, North-West Greenland. J. Glaciol. 62 (236), 11041114.
Keller, H. B. 1977 Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976), Publ. Math. Res. Center, No. 38, pp. 359384. Academic Press.
Kuehn, C. 2012 Deterministic continuation of stochastic metastable equilibria via Lyapunov equations and ellipsoids. SIAM J. Sci. Comput. 34 (3), A1635A1658.
Mantelli, E., Bertagni, M. B. & Ridolfi, L. 2016 Stochastic ice stream dynamics. Proc. Natl Acad. Sci. USA 113 (32), E4594600.
Moon, W. & Wettlaufer, J. S. 2017 A stochastic dynamical model of arctic sea ice. J. Clim. 30 (13), 51195140.
Oppenheimer, M. 1998 Global warming and the stability of the West Antarctic Ice Sheet. Nature 393 (6683), 325332.
Park, J. W., Gourmelen, N., Shepherd, A., Kim, S. W., Vaughan, D. G. & Wingham, D. J. 2013 Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett. 40 (10), 21372142.
Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D. et al. 2012 Results of the marine ice sheet model intercomparison project, MISMIP. Cryosp. Discuss. 6 (1), 267308.
Schoof, C. 2007a Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res. 112, 119.
Schoof, C. 2007b Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech. 573, 2755.
Schoof, C. 2012 Marine ice sheet stability. J. Fluid Mech. 698, 6272.
Van der Veen, C. J. 2013 Fundamentals of Glacier Dynamics. CRC Press.
Vieli, A. & Payne, A. J. 2005 Assessing the ability of numerical ice sheet models to simulate grounding line migration. J. Geophys. Res. 110, 118.
Weertman, J. 1957 On the sliding of glaciers. J. Glaciol. 3, 3338.
Weertman, J. 1974 Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 311.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Stochastic marine ice sheet variability

  • T. E. Mulder (a1), S. Baars (a2), F. W. Wubs (a2) and H. A. Dijkstra (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed