Skip to main content Accessibility help
×
Home

Stochastic forcing of the Lamb–Oseen vortex

  • J. FONTANE (a1), P. BRANCHER (a1) and D. FABRE (a1)

Abstract

The aim of the present paper is to analyse the dynamics of the Lamb–Oseen vortex when continuously forced by a random excitation. Stochastic forcing is classically used to mimic external perturbations in realistic configurations, such as variations of atmospheric conditions, weak compressibility effects, wing-generated turbulence injected into aircraft wakes, or free-stream turbulence in wind tunnel experiments. The linear response of the Lamb–Oseen vortex to stochastic forcing can be decomposed in relation to the azimuthal symmetry of the perturbation given by the azimuthal wavenumber m. In the axisymmetric case m = 0, we find that the response is characterized by the generation of vortex rings at the outer periphery of the vortex core. This result is consistent with recurrent observations of such dynamics in the study of vortex–turbulence interaction. When considering helical perturbations m = 1, the response at large axial wavelengths consists of a global translation of the vortex, a feature very similar to the phenomenon of vortex meandering (or wandering) observed experimentally, corresponding to an erratic displacement of the vortex core. At smaller wavelengths, we find that stochastic forcing can excite specific oscillating modes of the Lamb–Oseen vortex. More precisely, damped critical-layer modes can emerge via a resonance mechanism. For perturbations with higher azimuthal wavenumber m ≥ 2, we find no structure that clearly dominates the response of the vortex.

Copyright

References

Hide All
Antkowiak, A. 2005 Dynamique aux temps courts d'un tourbillon isolé. PhD thesis, Université Paul Sabatier (UPS), Toulouse, France.
Antkowiak, A. & Brancher, P. 2004 Transient energy growth for the Lamb-Oseen vortex. Phys. Fluids 16, L1L4.
Antkowiak, A. & Brancher, P. 2007 On vortex rings around vortices: an optimal mechanism. J. Fluid Mech. 578, 295304.
Baker, G. R., Barker, S. J., Bofah, K. K. & Saffman, P. G. 1974 Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65, 325336.
Bamieh, B. & Dahleh, M. 2001 Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13, 32583269.
Billant, P., Brancher, P. & Chomaz, J. M. 1999 Three-dimensional stability of a vortex pair. Phys. Fluids 11, 20692077.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4, 16371650.
Butler, K. M. & Farrell, B. F. 1993 Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A 5, 774777.
Corbett, P. & Bottaro, A. 2001 Optimal linear growth in swept bounday layers. J. Fluid Mech. 435, 123.
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8, 21722179.
Devenport, W. J., Rife, M. C., Liapis, S. I. & Follin, G. J. 1996 The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 60106.
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.
Fabre, D., Sipp, D. & Jacquin, L. 2006 Kelvin waves and the singular modes of the Lamb-Oseen vortex. J. Fluid Mech. 551, 235274.
Farrell, B. F. & Ioannou, P. J. 1993 a Optimal excitation of three-dimensionnal perturbations in viscous constant shear flow. Phys. Fluids A 5, 13901400.
Farrell, B. F. & Ioannou, P. J. 1993 b Stochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids A 5, 26002609.
Farrell, B. F. & Ioannou, P. J. 1994 Variance maintained by stochasting forcing of non-normal dynamical systems associated with linearly stable shear flows. Phys. Rev. Lett. 72, 11881191.
Hoepffner, J. 2006 Stability and control of shear flows subject to stochastic excitations. PhD thesis, R. Inst. Tech. (KTH), Stockholm, Sweden.
Joly, L., Fontane, J. & Chassaing, P. 2005 The Rayleigh-Taylor instability of two-dimensional high-density vortices. J. Fluid Mech. 537, 415431.
Jovanovic, M. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.
Marshall, J. S. & Beninati, M. L. 2005 External turbulence interaction with a columnar vortex. J. Fluid Mech. 540, 221245.
Melander, M. V. & Hussain, F. 1993 Coupling between a coherent structure and fine-scale turbulence. Phys. Rev. E 48, 26692689.
Miyazaki, T. & Hunt, J. 2000 Linear and non-linear interactions between a columnar vortex and external turbulence. J. Fluid Mech. 402, 349378.
Moore, D. W. & Saffman, P. G. 1975 The instability of a straigth vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.
Nolan, D.S. & Farrell, B. F. 1999 The intensification of two-dimensional swirling flows by stochastic asymmetric forcing. J. Atmos. Sci. 56, 39373962.
Orr, W. M. 1907 a The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. part 1: A perfect liquid. Proc. R. Irish Acad. 27, 968.
Orr, W. M. 1907 b The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. part 2: A viscous liquid. Proc. R. Irish Acad. 27, 69138.
Pradeep, D. S. & Hussain, F. 2006 Transient growth of perturbations in a vortex column. J. Fluid Mech. 550, 251288.
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Maths 53, 1547.
Risso, F., Corjon, A. & Stoessel, A. 1997 Direct numerical simulations of wake vortices in intense homogeneous turbulence. AIAA J. 35, 10301040.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Takahashi, N., Ishii, H. & Miyazaki, T. 2005 The influence of turbulence on a columnar vortex. Phys. Fluids 17, 035105.
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.
Tsai, C. Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed starin field. J. Fluid Mech. 73, 721733.
Weideman, J. A. C. & Reddy, S. C. 2000 A matlab differentiation matrix suite. ACM Trans. Math. Soft. 26, 465519.
Whitaker, J. S. & Sardeshmukh, P. D. 1998 A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci. 55, 238258.
Zhou, K., Doyle, J. & Glover, K. 1995 Robust and Optimal Control, 1st edn. Prentice Hall.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Stochastic forcing of the Lamb–Oseen vortex

  • J. FONTANE (a1), P. BRANCHER (a1) and D. FABRE (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed