Skip to main content Accessibility help

The steady motion of a closely fitting vesicle in a tube

  • Joseph M. Barakat (a1) and Eric S. G. Shaqfeh (a1) (a2) (a3)


A singular perturbation theory is developed for the steady, inertialess motion of a lipid-bilayer vesicle flowing through a narrow tube. The vesicle is treated as a sac of fluid enclosed by an inextensible membrane that admits a bending stiffness. Matched asymptotic expansions are developed in terms of a clearance parameter $\unicode[STIX]{x1D716}\ll 1$ in order to calculate the flow field and vesicle shape. Mild restrictions are applied to the ratio of viscosities $\unicode[STIX]{x1D705}$ and the ratio of bending stresses to viscous stresses $\unicode[STIX]{x1D6FD}$ ; in particular, the theory holds for $\unicode[STIX]{x1D705}=o(\unicode[STIX]{x1D716}^{-1/2})$ and $\unicode[STIX]{x1D6FD}=O(\unicode[STIX]{x1D716}^{-1})$ . The ratio of the vesicle length to the tube radius $\ell$ is included as a parameter and asymptotic solutions in the limit of negligible bending stiffness are developed for long, cylindrical vesicles and short, spherical vesicles. The main result of the theory is a prediction for the vesicle speed and extra pressure drop due to the presence of the vesicle in the tube. The effects of confinement, vesicle length, and membrane bending elasticity are examined. The theoretical predictions show good agreement with experimental measurements reported for vesicles and red blood cells in highly confined channel flow. Previously reported models for red blood cells (Secomb et al.J. Fluid Mech., vol. 163, 1986, pp. 405–423; Halpern & Secomb, J. Fluid Mech., vol. 203, 1989, pp. 381–400) are clarified and extended in light of the new theory.


Corresponding author

Email address for correspondence:


Hide All
Abkarian, M., Faivre, M., Horton, R., Smistrup, K., Best-Popescu, C. A. & Stone, H. A. 2008 Cellular-scale hydrodynamics. Biomed. Mater. 3 (3), 034011.
Abkarian, M., Faivre, M. & Stone, H. A. 2006 High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc. Natl Acad. Sci. USA 103 (3), 538542.
Ahmmed, S., Suteria, N. S., Garbin, V. & Vanapalli, S. A.2017 Hydrodynamic mobility of confined polymeric particles, vesicles, and cancer cells in a square microchannel. arXiv:1711.02187.
Albrecht, K. H., Gaehtgens, P., Pries, A. & Heuser, M. 1979 The Fahraeus effect in narrow capillaries (i.d. 3. 3–11. 0 μm). Microvasc. Res. 18 (1), 3347.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.
Bruinsma, R. 1996 Rheology and shape transitions of vesicles under capillary flow. Physica A 234 (1–2), 249270.
Buckingham, E. 1914 On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4 (4), 345376.
Bungay, P. M. & Brenner, H. 1973 The motion of a closely-fitting sphere in a fluid-filled tube. Intl J. Multiphase Flow 1 (1), 2556.
Canham, P. B. & Burton, A. C. 1968 Distribution of size and shape in populations of normal human red cells. Circulat. Res 22 (3), 405422.
Cantat, I. 2013 Liquid meniscus friction on a wet plate: bubbles, lamellae, and foams. Phys. Fluids 25 (3), 031303.
Dixit, H. N. & Homsy, G. M. 2013a The elastic Landau–Levich problem. J. Fluid Mech. 732, 528.
Dixit, H. N. & Homsy, G. M. 2013b The elastocapillary Landau–Levich problem. J. Fluid Mech. 735, 128.
van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic Press.
Evans, E. & Needham, D. 1987 Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions. J. Phys. Chem. 91 (16), 42194228.
Halpern, D. & Secomb, T. W. 1989 The squeezing of red blood cells through capillaries with near-minimal diameters. J. Fluid Mech. 203, 381400.
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28c (11), 693703.
Hochmuth, R. M. 2000 Micropipette aspiration of living cells. J. Biomech. 33 (1), 1522.
Hochmuth, R. M. & Sutera, S. P. 1970 Spherical caps in low Reynolds-number tube flow. Chem. Engng Sci. 25 (4), 593604.
Jenkins, J. T. 1977 Static equilibrium configurations of a model red blood cell. J. Math. Biol. 4 (2), 149169.
Landau, L. D. & Levich, V. G. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 42.
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Lighthill, M. J. 1968 Pressure-forcing of tightly fitting pellets along fluid-filled elastic tubes. J. Fluid Mech. 34 (1), 113143.
Mohandas, N. & Evans, E. 1994 Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23, 787818.
Morrison, D. D., Riley, J. D. & Zancanaro, J. F. 1962 Multiple shooting method for two-point boundary value problems. Comm. ACM 5 (12), 613614.
Noguchi, H. & Gompper, G. 2005 Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl Acad. Sci. USA 102 (40), 1415914164.
O’Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27, 705724.
Park, C. W. & Homsy, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139, 291308.
Pozrikidis, C. 2005 Axisymmetric motion of a file of red blood cells through capillaries. Phys. Fluids 17 (3), 1503.
Pries, A. R., Neuhaus, D. & Gaehtgens, P. 1992 Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Phys. 263 (6), H1770H1778.
Quéguiner, C. & Barthès-Biesel, D. 1997 Axisymmetric motion of capsules through cylindrical channels. J. Fluid Mech. 348, 349376.
Ratulowski, J. & Chang, H. C. 1990 Marangoni effects of trace impurities on the motion of long gas bubbles in capillaries. J. Fluid Mech. 210, 303328.
Savin, T., Bandi, M. M. & Mahadevan, L. 2016 Pressure-driven occlusive flow of a confined red blood cell. Soft Matt. 12 (2), 562573.
Schwartz, L. W., Princen, H. M. & Kiss, A. D. 1986 On the motion of bubbles in capillary tubes. J. Fluid Mech. 172, 259275.
Secomb, T. W. 1988 Interaction between bending and tension forces in bilayer membranes. Biophys. J. 54 (4), 743746.
Secomb, T. W., Skalak, R., Oozkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.
Sharei, A., Zoldan, J., Adamo, A., Sim, W. Y., Cho, N., Jackson, E., Mao, S., Schneider, S., Han, M.-J., Lytton-Jean, A. et al. 2013 A vector-free microfluidic platform for intracellular delivery. Proc. Natl Acad. Sci. USA 110 (6), 20822087.
Squires, T. M. & Quake, S. R. 2005 Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.
Stoer, J. & Bulirsch, R. 2002 Introduction to Numerical Analysis, vol. 12. Springer Science & Business Media.
Tomaiuolo, G., Simeone, M., Martinelli, V., Rotoli, B. & Guido, S. 2009 Red blood cell deformation in microconfined flow. Soft Matt. 5 (19), 3736.
Trozzo, R., Boedec, G., Leonetti, M. & Jaeger, M. 2015 Axisymmetric boundary element method for vesicles in a capillary. J. Comput. Phys. 289, 6282.
Vitkova, V., Mader, M. & Podgorski, T. 2004 Deformation of vesicles flowing through capillaries. Europhys. Lett. 68 (3), 398404.
Wilson, S. K. 1995 The effect of an axial temperature gradient on the steady motion of a large droplet in a tube. J. Engng Maths 29 (3), 205217.
Wong, H., Radke, C. J. & Morris, S. 1995 The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow. J. Fluid Mech. 292, 95110.
Zhong-can, O.-Y. & Helfrich, W. 1989 Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39 (10), 52805288.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

The steady motion of a closely fitting vesicle in a tube

  • Joseph M. Barakat (a1) and Eric S. G. Shaqfeh (a1) (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed