Skip to main content Accessibility help

Speeding up thermocapillary migration of a confined bubble by wall slip

  • Ying-Chih Liao (a1), Yen-Ching Li (a2), Yu-Chih Chang (a1), Chih-Yung Huang (a3) and Hsien-Hung Wei (a2)...


It is usually believed that wall slip contributes small effects to macroscopic flow characteristics. Here we demonstrate that this is not the case for the thermocapillary migration of a long bubble in a slippery tube. We show that a fraction of the wall slip, with the slip length $\lambda $ much smaller than the tube radius $R$ , can make the bubble migrate much faster than without wall slip. This speedup effect occurs in the strong-slip regime where the film thickness $b$ is smaller than $\lambda $ when the Marangoni number $S= \tau _{T} R/\sigma _{0}~ (\ll 1)$ is below the critical value $S^* \sim (\lambda /R)^{1/2}$ , where $\tau _{T}$ is the driving thermal stress and $\sigma _{0}$ is the surface tension. The resulting bubble migration speed is found to be $U_{b} \sim (\sigma _{0}/\mu )S^{3}(\lambda /R)$ , which can be more than a hundred times faster than the no-slip result $U_{b} \sim (\sigma _{0}/\mu )S^{5}$ (Wilson, J. Eng. Math., vol. 29, 1995, pp. 205–217; Mazouchi & Homsy, Phys. Fluids, vol. 12, 2000, pp. 542–549), with $\mu $ being the fluid viscosity. The change from the fifth power law to the cubic one also indicates a transition from the no-slip state to the strong-slip state, albeit the film thickness always scales as $b\sim RS^{2}$ . The formal lubrication analysis and numerical results confirm the above findings. Our results in different slip regimes are shown to be equivalent to those for the Bretherton problem (Liao, Li & Wei, Phys. Rev. Lett., vol. 111, 2013, 136001). Extension to polygonal tubes and connection to experiments are also made. It is found that the slight discrepancy between experiment (Lajeunesse & Homsy, Phys. Fluids, vol. 15, 2003, pp. 308–314) and theory (Mazouchi & Homsy, Phys. Fluids, vol. 13, 2001, pp. 1594–1600) can be interpreted by including wall slip effects.


Corresponding author

Email address for correspondence:


Hide All
Baroud, C. N., Delville, J.-P., Gallaire, F. & Wunenburger, R. 2007 Thermocapillary valve for droplet production and sorting. Phys. Rev. E 75, 046302.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.
Brochard-Wyart, F., Debrégeas, G. & de Gennes, P. G. 1996 Spreading of viscous droplets on a non-viscous liquid. Colloid Polym. Sci. 274, 7072.
Brzoska, J. B., Brochard-Wyart, F. & Rondelez, F. 1993 Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9, 22202224.
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96, 066001.
Craig, V. S. J., Neto, C. & Williams, D. R. M. 2001 Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87, 054504.
Darhuber, A. A., Valentino, J. P., Troian, S. M. & Wagner, S. 2003 Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J. Microelectromech. Syst. 12, 873879.
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.
Gomba, J. M. & Homsy, G. M. 2010 Regimes of thermocapillary migration of droplets under partial wetting conditions. J. Fluid Mech. 647, 125142.
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.
Hu, G.-H. 2005 Linear stability of ultrathin slipping films with insoluble surfactant. Phys. Fluids 17, 088105.
Jiao, Z., Huang, X., Nguyen, N.-T. & Abgrall, P. 2008 Thermocapillary actuation of a droplet in a planar microchannel. Microfluid. Nanofluid. 5, 205214.
Karapetsas, G., Sahu, K. C. & Matar, O. K. 2013 Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate. Langmuir 29, 88928906.
Kargupta, K., Sharma, A. & Khanna, R. 2004 Instability, dynamics and morphology of thin slipping film. Langmuir 20, 244253.
Lajeunesse, E. & Homsy, G. M. 2003 Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments. Phys. Fluids 15, 308314.
Lauga, E., Brenner, M. P. & Stone, H. A. 2007 Microfluidics: the no-slip boundary condition. In Springer Handbook of Experimental Fluid Mechanics, pp. 12191240. Springer.
Li, Y.-C., Liao, Y.-C., Wen, T.-C. & Wei, H.-H. 2014 Breakdown of the Bretherton law due to wall slippage. J. Fluid Mech. 741, 200227.
Liao, Y.-C., Li, Y.-C. & Wei, H.-H. 2013 Drastic changes in interfacial hydrodynamics due to wall slippage: slip-intensified film thinning, drop spreading, and capillary instability. Phys. Rev. Lett. 111, 136001.
Mazouchi, A. & Homsy, G. M. 2000 Thermocapillary migration of long bubbles in cylindrical capillary tubes. Phys. Fluids 12, 542549.
Mazouchi, A. & Homsy, G. M. 2001 Thermocapillary migration of long bubbles in polygonal tubes. I. Theory. Phys. Fluids 13, 15941600.
Münch, A. 2005 Dewetting rates of thin liquid films. J. Phys.: Condens. Matter 17, S309S318.
Münch, A. & Wagner, B. 2005 Contact-line instability of dewetting thin films. Physica D 209, 178190.
Münch, A., Wagner, B. & Witelski, T. P. 2005 Lubrication models with small to large slip lengths. J. Engng Math. 53, 359383.
Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluids. Mém. Présentés par Divers Savants Acad. Sci. Inst. Fr. 6, 389440.
Nguyen, H.-B. & Chen, J.-C. 2010 A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids 22, 062102.
Pratap, V., Moumen, N. & Subramanian, R. S. 2008 Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir 24, 51855193.
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.
Selva, B., Miralles, V., Cantat, I. & Jullien, M.-C. 2010 Thermocapillary actuation by optimised resistor pattern: bubbles and droplets, displacing, switching and trapping. Lab on a Chip 10, 18351840.
Sharma, A. & Kargupta, K. 2003 Instability and dynamics of thin slipping films. Appl. Phys. Lett. 83, 35493551.
Slattery, J. C. 1974 Interfacial effects in the entrapment and displacement of residual oil. AIChE J. 20, 11451154.
Smith, M. K. 1995 Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. J. Fluid Mech. 294, 209230.
Stone, H. A. 2010 Interfaces: in fluid mechanics and across disciplines. J. Fluid Mech. 645, 125.
Subramanian, R. S. 1981 Slow migration of a gas bubble in a thermal gradient. AIChE J. 27, 646654.
Tyrrell, J. W. G. & Attard, P. 2001 Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104.
Wilson, S. K. 1993 The steady thermocapillary-driven motion of a large droplet in a closed tube. Phys. Fluids A 5, 20642066.
Wilson, S. K. 1995 The effect of an axial temperature gradient on the steady motion of a large droplet in a tube. J. Engng Math. 29, 205217.
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350356.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Speeding up thermocapillary migration of a confined bubble by wall slip

  • Ying-Chih Liao (a1), Yen-Ching Li (a2), Yu-Chih Chang (a1), Chih-Yung Huang (a3) and Hsien-Hung Wei (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed