Skip to main content Accessibility help
×
Home

Spatially localized multi-scale energy transfer in turbulent premixed combustion

  • J. Kim (a1), M. Bassenne (a1), C. A. Z. Towery (a2), P. E. Hamlington (a2), A. Y. Poludnenko (a3) and J. Urzay (a1)...

Abstract

A three-dimensional wavelet multi-resolution analysis of direct numerical simulations of a turbulent premixed flame is performed in order to investigate the spatially localized spectral transfer of kinetic energy across scales in the vicinity of the flame front. A formulation is developed that addresses the compressible spectral dynamics of the kinetic energy in wavelet space. The wavelet basis enables the examination of local energy spectra, along with inter-scale and subfilter-scale (SFS) cumulative energy fluxes across a scale cutoff, all quantities being available either unconditioned or conditioned on the local instantaneous value of the progress variable across the flame brush. The results include the quantification of mean spectral values and associated spatial variabilities. The energy spectra undergo, in most locations in the flame brush, a precipitous drop that starts at scales of the same order as the characteristic flame scale and continues to smaller scales, even though the corresponding decrease of the mean spectra is much more gradual. The mean convective inter-scale flux indicates that convection increases the energy of small scales, although it does so in a non-conservative manner due to the high aspect ratio of the grid, which limits the maximum scale level that can be used in the wavelet transform, and to the non-periodic boundary conditions, which exchange energy through surface forces, as explicitly elucidated by the formulation. The mean pressure-gradient inter-scale flux extracts energy from intermediate scales of the same order as the characteristic flame scale, and injects energy in the smaller and larger scales. The local SFS-cumulative contribution of the convective and pressure-gradient mechanisms of energy transfer across a given cutoff scale imposed by a wavelet filter is analysed. The local SFS-cumulative energy flux is such that the subfilter scales upstream from the flame always receive energy on average. Conversely, within the flame brush, energy is drained on average from the subfilter scales by convective and pressure-gradient effects most intensely when the filter cutoff is larger than the characteristic flame scale.

Copyright

Corresponding author

Email address for correspondence: jurzay@stanford.edu

Footnotes

Hide All

Present address: School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA.

Footnotes

References

Hide All
Addison, P. S. 2002 The Illustrated Wavelet Transform Handbook. CRC Press.
Aldredge, R. C. & Williams, F. A. 1991 Influence of wrinkled premixed-flame dynamics on large-scale, low-intensity turbulent flow. J. Fluid Mech. 228, 487511.
Aluie, H. 2013 Scale decomposition in compressible turbulence. Physica D 247, 5465.
Aluie, H., Li, S. & Li, H. 2012 Conservative cascade of kinetic energy in compressible turbulence. Astrophys. J. Lett. 751, 16.
Bassenne, M., Urzay, J., Schneider, K. & Moin, P. 2017 Extraction of coherent clusters and grid adaptation in particle-laden turbulence. Phys. Rev. Fluids 2, 054301.
Batchelor, G. K. 1959 The Theory of Homogeneous Turbulence. Cambridge University Press.
Brasseur, J. & Wang, Q. 1995 Structural evolution of intermittency and anisotropy at different scales analyzed using three-dimensional wavelet transforms. Phys. Fluids. 4, 25382554.
Bockhorn, H., Froölich, J. & Schneider, K. 1999 An adaptive two-dimensional wavelet–vaguelette algorithm for the computation of flame balls. Combust. Theor. Model. 3, 177198.
Cramer, M. S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24, 066102.
Craya, A.1958 Contribution à l’analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l’Air, No. 345.
Daubechies, I. 1992 Ten Lectures on Wavelets. SIAM.
Daubechies, I. 1993 Orthonormal bases of compactly supported wavelets: II. Variations on a theme. SIAM J. Math. Anal. 24, 499519.
Deriaz, E., Farge, M. & Schneider, K. 2010 Craya decomposition using compactly supported biorthogonal wavelets. Appl. Comput. Harmon. Anal. 491, 267284.
Dunn, S. C. & Morrison, J. F. 2003 Anisotropy and energy flux in wall turbulence. J. Fluid Mech. 491, 353378.
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395458.
Grossmann, A. & Morlet, J. 1984 Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723736.
Jones, S. & Lichtl, A. 2015 GPU’s to Mars: full-scale simulation of space-X’s Mars rocket. In GPU Technology Conference, San Jose CA. Nvidia.
Kida, S. & Orszag, S. A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5, 85125.
Kolla, H., Hawkes, E. R., Kerstein, A. R., Swaminathan, N. & Chen, J. H. 2014 On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456487.
Hamlington, P. E., Poludnenko, A. Y. & Oran, E. S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23, 125111.
Iima, M. & Toh, S. 1995 Wavelet analysis of the energy transfer caused by convective terms: application to the Burgers shock. Phys. Rev. E 52, 61896201.
MacArt, J. F., Grenga, T. & Mueller, M. E. 2018 Effects of combustion heat release on velocity and scalar statistics in turbulent premixed jet flames at low and high Karlovitz numbers. Combust. Flame 191, 468485.
Mallat, S. G. 1989 A theory for multi-resolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674693.
Mallat, S. G. 2008 A Wavelet Tour of Signal Processing. Academic Press.
Meneveau, C. 1990 Analysis of turbulence in the orthonormal wavelet representation. In CTR Manuscript #120, pp. 153. Center for Turbulence Research, Stanford University & NASA Ames Research Center.
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.
Moyal, J. E. 1952 The spectra of turbulence in a compressible fluid; eddy turbulence and random noise. Math. Proc. Camb. Phil. Soc. 48, 329344.
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.
O’Brien, J., Towery, C. A. Z., Hamlington, P. E., Ihme, M., Poludnenko, A. Y. & Urzay, J. 2017 The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc. Combust. Inst. 36, 19671975.
O’Brien, J., Urzay, J., Ihme, M., Moin, P. & Saghafian, A. 2014a Subgrid-scale backscatter in reacting and inert supersonic hydrogen–air turbulent mixing layers. J. Fluid Mech. 743, 554584.
O’Brien, J., Urzay, J., Poludnenko, A. Y., Hamlington, P. E. & Ihme, M. 2014b Counter-gradient subgrid-scale transport and reverse-cascade phenomena in turbulent deflagrations. In Proceedings of the Summer Program, pp. 147157. Center for Turbulence Research, Stanford University.
Perrier, V., Philipovitch, T. & Basdevant, C. Wavelet spectra compared to Fourier spectra. J. Math. Phys. 36, 15061519.
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.
Petersen, M. R. & Livescu, D. 2010 Forcing for statistically stationary compressible isotropic turbulence. Phys. Fluids 22, 116101.
Poludnenko, A. Y. 2015 Pulsating instability and self-acceleration of fast turbulent flames. Phys. Fluids 27, 014106.
Poludnenko, A. Y. & Oran, E. S. 2010 The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 9951011.
Pouransari, H., Kolla, H., Chen, J. H. & Mani, A. 2017 Spectral analysis of energy transfer in turbulent flows laden with heated particles. J. Fluid Mech. 813, 11561175.
Prosser, R. & Cant, R. S. 2011 Wavelet methods in computational combustion. In Turbulent Combustion Modeling, pp. 331351. Springer.
Ruppert-Felsot, J., Farge, M. & Petitjeans, P. 2009 Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636, 427453.
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.
Sakurai, T., Yoshimatsu, K., Schneider, K., Farge, M., Morishita, K. & Ishihara, T. 2017 Coherent structure extraction in turbulent channel flow using boundary adapted wavelets. J. Turbul. 18, 352372.
Schneider, K. & Vasilyev, O. 2010 Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech. 42, 473503.
Strang, G. & Nguyen, N. 1996 Wavelets and Filter Banks. SIAM.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Towery, C. A. Z., Poludnenko, A. Y., Urzay, J., O’Brien, J., Ihme, M. & Hamlington, P. E. 2016 Spectral kinetic-energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93, 053115.
Urzay, J., Doostmohammadi, A. & Yeomans, J. M. 2017 Multi-scale statistics of turbulence motorized by active matter. J. Fluid Mech. 822, 762773.
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.
Veynante, D. & Poinsot, T. 1997 Effects of pressure gradients on turbulent premixed flames. J. Fluid Mech. 353, 83114.
Wang, H., Hawkes, E. R., Chen, J. H., Zhou, B., Li, Z. & Aldén, M. 2013 Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid. Mech. 815, 511536.
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110, 214505.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Spatially localized multi-scale energy transfer in turbulent premixed combustion

  • J. Kim (a1), M. Bassenne (a1), C. A. Z. Towery (a2), P. E. Hamlington (a2), A. Y. Poludnenko (a3) and J. Urzay (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.