Alinhac, S.
1993
Temps de vie des solutions régulières des équations d’Euler compressibles. Invent. Math.
111, 627–670.

Arnold, V. I.
1989
Mathematical Methods of Classical Mechanics, 2nd edn. Springer.

Arnold, V. I.
1990
Singularities of Caustics and Wave Fronts. Kluwer.

Berry, M. V.
1981
Singularities in waves and rays. In Les Houches, Session XXXV (ed. Balian, R., Kleman, M. & Poirier, J.-P.), pp. 453–543. North-Holland.

Bianchini, S. & Bressan, A.
2005
Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Maths
161, 223–342.

Bordemann, M. & Hoppe, J.
1993
The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics. Phys. Lett. B
317, 315–320.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zhang, T.
2006
Spectral Methods. vol. 1. Springer.

Cates, A. T. & Crighton, D. G.
1990
Nonlinear diffraction and caustic formation. Proc. R. Soc. Lond. A
430, 69–88.

Cates, A. T. & Sturtevant, B.
1997
Shock wave focusing using geometrical shock dynamics. Phys. Fluids
9, 3058–3068.

Chiodaroli, E. & De Lellis, C.
2015
Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Maths
68, 1157–1190.

Christodoulou, D.
2007
The Formation of Shocks in 3-dimensional Fluids. EMS Monographs in Mathematics.

Cole, J. D.
1951
On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Maths
9, 225–236.

Courant, R. & Friedrichs, K. O.
1948
Supersonic Flow and Shock Waves. Springer.

Cramer, M. S. & Seebass, A. R.
1978
Focusing of weak shock waves at an arête. J. Fluid Mech.
88, 209–222.

Dubrovin, B., Grava, T., Klein, C. & Moro, A.
2015
On critical behaviour in systems of hamiltonian partial differential equations. J. Nonlinear Sci.
25, 631–707.

Dubrovin, B., Grava, T. & Klein, C.
2016
On critical behaviour in generalized Kadomtsev-Petviashvili equations. Physica D
333, 157–170.

Eggers, J. & Fontelos, M. A.
2009
The role of self-similarity in singularities of partial differential equations. Nonlinearity
22, R1–R44.

Eggers, J. & Fontelos, M. A.
2015
Singularities: Formation, Structure, and Propagation. Cambridge University Press.

Eggers, J., Hoppe, J., Hynek, M. & Suramlishvili, N.
2014
Singularities of relativistic membranes. Geom. Flows
1, 17–33.

Elling, V.
2006
A possible counterexample to well posdness of entropy solutions and to Godunov scheme convergence. Maths Comput.
75, 1721–1733.

Grava, T., Klein, C. & Eggers, J.
2016
Shock formation in the dispersionless Kadomtsev–Petviashvili equation. Nonlinearity
29, 1384–1416.

Hopf, E.
1950
The partial differential equation *u*
_{
t
} + *uu*
_{
x
} =𝜇 *u*
_{
xx
}
. Commun. Pure Appl. Maths
3, 201–230.

Hou, T. Y.
2009
Blow-up or no blow-up? A unified computational and analytic approach to 3D incompressible Euler and Navier–Stokes equations. Acta Numerica
18, 277–346.

Kruzkov, S. N.
1969
Generalized solutions of the Cauchy problem in the large for first order nonlinear equations. Dokl. Akad. Nauk SSSR
187, 29–32.

Kurganov, A. & Levy, D.
2002
Central-upwind schemes for the Saint-Venant system. Math. Modelling Numer. Anal.
36, 397–425.

Landau, L. D. & Lifshitz, E. M.
1984
Fluid Mechanics. Pergamon.

Lax, P. D.
1973
Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves.
*(CBMS Regional Conf. Ser. in Appl. Math.)*
, vol. 11. SIAM.

van Leer, B.
1979
Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method. J. Comput. Phys.
32, 101–136.

Majda, A.
1984
Smooth solutions for the equations of compressible and incompressible fluid flow. In Fluid Dynamics (ed. Beirão da Veiga, H.), vol. 1047, pp. 75–126. Springer.

Manakov, S. V. & Santini, P. M.
2008
On the solutions of the dKP equation: the nonlinear Riemann Hilbert problem, longtime behaviour, implicit solutions and wave breaking. Nonlinearity
41, 055204.

Manakov, S. V. & Santini, P. M.
2012
Wave breaking in the solutions of the dispersionless Kadomtsev–Petviashvili equation at a finite time. Theor. Math. Phys.
172, 1118–1126.

Nye, J.
1999
Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing.

Pomeau, Y., Jamin, T., Le Bars, M., Le Gal, P. & Audoly, B.
2008a
Law of spreading of the crest of a breaking wave. Proc. R. Soc. Lond. A
464, 1851–1866.

Pomeau, Y., Le Berre, M., Guyenne, P. & Grilli, S.
2008b
Wave-breaking and generic singularities of nonlinear hyperbolic equations. Nonlinearity
21, T61–T79.

Popinet, S.
2011
Quadtree-adaptive tsunami modelling. Ocean Dyn.
61, 1261–1285.

Poston, T. & Stewart, I.
1978
Catastrophe Theory and Its Applications. Dover.

Riemann, B.
1860
Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
8, 43–66.

Rosenblum, S., Bechler, O., Shomroni, I., Kaner, R., Arusi-Parpar, T., Raz, O. & Dayan, B.
2014
Demonstration of fold and cusp catastrophes in an atomic cloud reflected from an optical barrier in the presence of gravity. Phys. Rev. Lett.
112, 120403.

Sturtevant, B. & Kulkarny, V. A.
1976
The focusing of weak shock waves. J. Fluid Mech.
73, 651–671.

Thom, R.
1976
The two-fold way of catastrophe theory. In Structural Stability, the Theory of Catastrophes, and Applications in the Sciences (ed. Hilton, P. J.), pp. 235–252. Springer.