Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T14:11:39.305Z Has data issue: false hasContentIssue false

Spatial stability and the onset of absolute instability of Batchelor's vortex for high swirl numbers

Published online by Cambridge University Press:  04 July 2007

L. PARRAS
Affiliation:
Universidad de Málaga, E.T.S. Ingenieros Industriales, Pza. El Ejido, s/n 29013 Málaga, Spain
R. FERNANDEZ-FERIA
Affiliation:
Universidad de Málaga, E.T.S. Ingenieros Industriales, Pza. El Ejido, s/n 29013 Málaga, Spain

Abstract

Batchelor's vortex has been commonly used in the past as a model for aircraft trailing vortices. Using a temporal stability analysis, new viscous unstable modes have been found for the high swirl numbers of interest in actual large-aircraft vortices. We look here for these unstable viscous modes occurring at large swirl numbers (q > 1.5), and large Reynolds numbers (Re >103), using a spatial stability analysis, thus characterizing the frequencies at which these modes become convectively unstable for different values of q, Re, and for different intensities of the uniform axial flow. We consider both jet-like and wake-like Batchelor's vortices, and are able to analyse the stability for Re as high as 108. We also characterize the frequencies and the swirl numbers for the onset of absolute instabilities of these unstable viscous modes for large q.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices (ed. S. I. Green), chap. 8, pp. 317–372. Kluwer.CrossRefGoogle Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, 529551.CrossRefGoogle Scholar
Bridges, T. J. & Morris, P. J. 1984 Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437460.CrossRefGoogle Scholar
Delbende, I., Chomaz, J.-M. & Huerre, P. 1998 Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response. J. Fluid Mech. 355, 229254.CrossRefGoogle Scholar
Duck, P. W. & Foster, M. R. 1980 The inviscid stability of a trailing line vortex. Z. Angew. Math. Phys. 31, 524532.CrossRefGoogle Scholar
Duck, P. W. & Khorrami, M. R. 1992 A note on the effect of viscosity on the stability of a trailing line vortex. J. Fluid Mech. 245, 175189.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2004 Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.CrossRefGoogle Scholar
Fabre, D. & LeDizès, S. Dizès, S. 2007 Viscous and inviscid centre-modes in vortices: the vicinity of the neutral curves. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Fernandez-Feria, R. & delPino, C. Pino, C. 2002 The onset of absolute instability of rotating Hagen–Poiseuille flow: a spatial stability analysis. Phys. Fluids 14, 30873097.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Khorrami, M. R. 1991a On the viscous modes of instability of a trailing line vortex. J. Fluid Mech. 225, 197212.CrossRefGoogle Scholar
Khorrami, M. R. 1991b A Chebyshev spectral collocation method using a staggered grid for the stability of cylindrical flows. Intl J. Numer. Meth. Fluids 12, 825833.CrossRefGoogle Scholar
LeDizès, S. Dizès, S. & Fabre, D. 2007 Large-Reynolds-number asymptotic analysis of viscous centre modes in vortices. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Leibovich, S. & Stewartson, K. 1983 A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335356.CrossRefGoogle Scholar
Lessen, M. & Paillet, F. 1974 The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid Mech. 65, 769779.CrossRefGoogle Scholar
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63, 753763.CrossRefGoogle Scholar
Mayer, E. W. & Powell, K. G. 1992 Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245, 91114.CrossRefGoogle Scholar
Olendraru, C. & Sellier, A. 2002 Viscous effects in the absolute-convective instability of the Batchelor vortex. J. Fluid Mech. 459, 371396.CrossRefGoogle Scholar
Stewartson, K. & Brown, S. 1985 Near-neutral centre-modes as inviscid perturbations to a trailing line vortex. J. Fluid Mech. 156, 387399.CrossRefGoogle Scholar
Stewartson, K. & Capell, K. 1985 On the stability of ring modes in a trailing line vortex: the lower neutral points. J. Fluid Mech. 156, 369386.CrossRefGoogle Scholar
Stewartson, K. & Leibovich, S. 1987 On the stability of a columnar vortex to disturbances with large azimuthal wavenumbers: the upper neutral points. J. Fluid Mech. 178, 549566.CrossRefGoogle Scholar
Stewartson, K., NG, T. W. & Brown, S. 1988 Viscous centre modes in the stability of swirling Poiseuille flow. Phil. Trans. R. Soc. Lond. A 324, 473512.Google Scholar