Skip to main content Accessibility help

Spatial stability analysis of subsonic corrugated jets

  • F. C. Lajús (a1) (a2), A. Sinha (a3), A. V. G. Cavalieri (a2), C. J. Deschamps (a1) and T. Colonius (a4)...


The linear stability of high-Reynolds-number corrugated jets is investigated by solving the compressible Rayleigh equation linearized about the time-averaged flow field. A Floquet ansatz is used to account for periodicity of this base flow in the azimuthal direction. The origin of multiple unstable solutions, which are known to appear in these non-circular configurations, is traced through gradual perturbations of a parametrized base-flow profile. It is shown that all unstable modes are corrugated jet continuations of the classical Kelvin–Helmholtz modes of circular jets, highlighting that the same instability mechanism, modified by corrugations, leads to the growth of disturbances in such flows. It is found that under certain conditions the eigenvalues may form saddles in the complex plane and display axis switching in their eigenfunctions. A parametric study is also conducted to understand how penetration and number of corrugations impact stability. The effect of these geometric properties on growth rates and phase speeds of the multiple unstable modes is explored, and the results provide guidelines for the development of nozzle configurations that more effectively modify the Kelvin–Helmholtz instability.


Corresponding author

Email address for correspondence:


Hide All
Alkislar, M. B., Krothapalli, A. & Butler, G. W. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.
Baqui, Y. B., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.
Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (04), 529551.
Baty, R. S. & Morris, P. J. 1995 The instability of jets of arbitrary exit geometry. Intl J. Numer. Meth. Fluids 21 (9), 763780.
Bender, C. M. & Orszag, S. A. 2013 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer.
Boujo, E., Fani, A. & Gallaire, F. 2015 Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications. J. Fluid Mech. 782, 491514.
Boyd, J. P. 1985 Complex coordinate methods for hydrodynamic instabilities and Sturm-Liouville eigenproblems with an interior singularity. J. Comput. Phys. 57 (3), 454471.
Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.
Bridges, J. & Brown, C. 2004 Parametric testing of chevrons on single flow hot jets. In 10th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2824.
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.
Callender, B., Gutmark, E. & Martens, S. 2007 A comprehensive study of fluidic injection technology for jet noise reduction. In 13th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 3608.
Case, K. M. 1960 Stability of inviscid plane Couette flow. Phys. Fluids 3 (2), 143148.
Cavalieri, A. V. G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18-19), 44744492.
Cavalieri, A. V. G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.
Cavalieri, A. V. G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71 (2), 020802.
Cavalieri, A. V. G., Rodríguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.
Crighton, D. G. 1973 Instability of an elliptic jet. J. Fluid Mech. 59 (4), 665672.
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.
Floquet, G. 1883 Sur les equations differentielles lineaires. Ann. Sci. École Norm. Sup. 12, 4788.
Gudmundsson, K.2010 Instability wave models of turbulent jets from round and serrated nozzles. PhD thesis, California Institute of Technology, Pasadena, CA.
Gudmundsson, K. & Colonius, T. 2007 Spatial stability analysis of chevron jet profiles. In 13th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 3599.
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.
Gutmark, E. J. & Grinstein, F. F. 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31 (1), 239272.
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20 (1), 487526.
Huerre, P., Batchelor, G. K., Moffatt, H. K. & Worster, M. G. 2000 Open shear flow instabilities. In Perspectives in Fluid Dynamics, pp. 159229. Cambridge University Press.
Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.
Kawahara, G., Jiménez, J., Uhlmann, M. & Pinelli, A. 2003 Linear instability of a corrugated vortex sheet – a model for streak instability. J. Fluid Mech. 483, 315342.
Kœnig, M., Sasaki, K., Cavalieri, A. V. G., Jordan, P. & Gervais, Y. 2016 Jet-noise control by fluidic injection from a rotating plug: linear and nonlinear sound-source mechanisms. J. Fluid Mech. 788, 358380.
Kopiev, V. & Ostrikov, N. 2012 Axisymmetrical instability wave control due to resonance coupling of azimuthal modes in high-speed jet issuing from corrugated nozzle. In 18th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2144.
Kopiev, V., Ostrikov, N., Chernyshev, S. & Elliott, J. 2004 Aeroacoustics of supersonic jet issued from corrugated nozzle: new approach and prospects. Intl J. Aeroacoust. 3 (3), 199228.
Koshigoe, S., Gutmark, E., Schadow, K. & Tubis, A. 1988 Wave structures in jets of arbitrary shape. III. Triangular jets. Phys. Fluids 31 (6), 14101419.
Koshigoe, S., Gutmark, E., Schadow, K. C. & Tubis, A. 1989 Initial development of noncircular jets leading to axis switching. AIAA J. 27 (4), 411419.
Koshigoe, S. & Tubis, A. 1986 Wave structures in jets of arbitrary shape. I. Linear inviscid spatial instability analysis. Phys. Fluids 29 (12), 39823992.
Koshigoe, S. & Tubis, A. 1987 Wave structures in jets of arbitrary shape. II. Application of a generalized shooting method to linear instability analysis. Phys. Fluids 30 (6), 17151723.
Lajus, F. C., Cavalieri, A. V. G. & Deschamps, C. J. 2015 Spatial stability characteristics of non-circular jets. In 21st AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2537.
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.
Marant, M. & Cossu, C. 2018 Influence of optimally amplified streamwise streaks on the Kelvin–Helmholtz instability. J. Fluid Mech. 838, 478500.
Maury, R., Cavalieri, A. V. G., Jordan, P., Delville, J. & Bonnet, J.-P. 2011 A study of the response of a round jet to pulsed fluidic actuation. In 17th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2750.
Michalke, A. 1964 On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech. 19 (4), 543556.
Michalke, A.1970 A note on the spatial jet-instability of the compressible cylindrical vortex sheet. Deutsche Luft-und Raumfahrt, DLR-FB 70-5.
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.
Michalke, A. & Fuchs, H. V. 1975 On turbulence and noise of an axisymmetric shear flow. J. Fluid Mech. 70, 179205.
Morris, P. J. 1988 Instability of elliptic jets. AIAA J. 26 (2), 172178.
Morris, P. J. 2010 The instability of high speed jets. Intl J. Aeroacoust. 9 (1-2), 150.
Morris, P. J. & Bhat, T. R. S. 1995 The spatial stability of compressible elliptic jets. Phys. Fluids 7 (1), 185194.
Morris, P. J. & Miller, D. G.1984 Wavelike structures in elliptic jets. AIAA Paper 399.
Ostrikov, N. N., Kopiev, V. F. & Kasyanov, V. V. 1998 Corrugation effect on the stability of the supersonic mixing layer. In 4th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2259.
Sinha, A. & Colonius, T. 2015 Linear stability implications of mean flow variations in turbulent jets issuing from serrated nozzles. In 21st AIAA/CEAS Aeroacoustics Conference. AIAA Paper 3125.
Sinha, A., Gudmundsson, K., Xia, H. & Colonius, T. 2016a Parabolized stability analysis of jets from serrated nozzles. J. Fluid Mech. 789, 3663.
Sinha, A., Rajagopalan, A. & Singla, S. 2016 Linear stability implications of chevron geometry modifications for turbulent jets. In 22nd AIAA/CEAS Aeroacoustics Conference. AIAA Paper 3053.
Sinha, A., Rodríguez, D., Brès, G. A. & Colonius, T. 2014 Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 7195.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.
Taira, K., Brunton, S. L., Dawson, S. T. M., Rowley, C. W., Colonius, T., McKeon, B. J., Schmidt, O. T., Gordeyev, S., Theofilis, V. & Ukeiley, L. S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 40134041.
Tam, C. K. W. & Burton, D. E. 1984 Sound generated by instability waves of supersonic flows. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.
Tam, C. K. W. & Hu, F. Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.
Tam, C. K. W. & Morris, P. J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer. J. Fluid Mech. 98 (2), 349381.
Tam, C. K. W. & Thies, A. T. 1993 Instability of rectangular jets. J. Fluid Mech. 248, 425448.
Tinney, C. E. & Jordan, P. 2008 The near pressure field of co-axial subsonic jets. J. Fluid Mech. 611, 175204.
Tissot, G., Zhang, M., Lajus, F. C., Cavalieri, A. V. G. & Jordan, P. 2017 Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811, 95137.
Trefethen, L. N. 2000 Spectral methods in MATLAB, vol. 10. Society for Industrial Mathematics.
Uzun, A., Alvi, F. S., Colonius, T. & Hussaini, M. Y. 2015 Spatial stability analysis of subsonic jets modified for low-frequency noise reduction. AIAA J. 53 (8), 23352358.
Zaman, K. B. M. Q., Bridges, J. E. & Huff, D. L. 2011 Evolution from tabs to chevron technology – a review. Intl J. Aeroacoust. 10 (5-6), 685709.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Lajús et al. supplementary movie
Spatial stability behavior of deformed Kelvin-Helmholtz modes, with gradual increase of corrugation (indicated by P arrows), at St=0.15 to 0.35 (animation steps of 0.1) near a saddle point. In the left, growth rates and phase speeds are displayed, with solid and dashed lines indicating the solution paths of two interacting modes along the complex plane. Colors indicate the solutions branch at low St level, while (i,ii) stands for the current St branch of increasing P. In the right, the behavior of some indicated eigenfunctions are displayed. For P=0.7, an axis-switching of eigenfunctions is observed. Beyond a certain P magnitude, this behavior is not verified, but then these modes change their solution path, and exchange positions in the current branch of increasing P. Black lines indicate the base-flow velocity profile, while contours indicate normalized absolute values of the eigenfunctions.

 Unknown (690 KB)
690 KB

Spatial stability analysis of subsonic corrugated jets

  • F. C. Lajús (a1) (a2), A. Sinha (a3), A. V. G. Cavalieri (a2), C. J. Deschamps (a1) and T. Colonius (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed