Skip to main content Accessibility help

Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments

  • Matthieu J. Mercier (a1) (a2), Manikandan Mathur (a1) (a3) (a4), Louis Gostiaux (a3), Theo Gerkema (a5), Jorge M. Magalhães (a6), José C. B. Da Silva (a6) and Thierry Dauxois (a2)...


In this paper, we present the first laboratory experiments that show the generation of internal solitary waves by the impingement of a quasi-two-dimensional internal wave beam on a pycnocline. These experiments were inspired by observations of internal solitary waves in the deep ocean from synthetic aperture radar (SAR) imagery, where this so-called mechanism of ‘local generation’ was argued to be at work, here in the form of internal tidal beams hitting the thermocline. Nonlinear processes involved here are found to be of two kinds. First, we observe the generation of a mean flow and higher harmonics at the location where the principal beam reflects from the surface and pycnocline; their characteristics are examined using particle image velocimetry (PIV) measurements. Second, we observe internal solitary waves that appear in the pycnocline, detected with ultrasonic probes; they are further characterized by a bulge in the frequency spectrum, distinct from the higher harmonics. Finally, the relevance of our results for understanding ocean observations is discussed.


Corresponding author

Email addresses for correspondence:,


Hide All
1. Akylas, T. R., Grimshaw, R. H. J., Clarke, S. R. & Tabaei, A. 2007 Reflecting tidal wave beams and local generation of solitary waves in the ocean thermocline. J. Fluid Mech. 593, 297313.
2. Azevedo, A., Da Silva, J. C. B. & New, A. L. 2006 On the generation and propagation of internal solitary waves in the southern Bay of Biscay. Deep-Sea Res. I 53, 927941.
3. Da Silva, J. C. B., New, A. L. & Azevedo, A. 2007 On the role of SAR for observing ‘local generation’ of internal solitary waves off the Iberian Peninsula. Can. J. Remote Sensing 33 (5), 388403.
4. Da Silva, J. C. B., New, A. L. & Magalhaes, J. M. 2009 Internal solitary waves in the Mozambique Channel: observations and interpretation. J. Geophys. Res. 114, C05001.
5. Da Silva, J. C. B., New, A. L. & Magalhaes, J. M. 2011 On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean. Deep-Sea Res. I 58 (3), 229240.
6. Delisi, D. P. & Orlanski, I. 1975 On the role of density jumps in the reflexion and breaking of internal gravity beams. J. Fluid Mech. 69, 445464.
7. Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29, S1.
8. Gerkema, T. 1996 A unified model for the generation and fission of internal tides in a rotating ocean. J. Mar. Res. 54 (3), 421450.
9. Gerkema, T. 2001 Internal and interfacial tides: beam scattering and local generation of solitary waves. J. Mar. Res. 59 (2), 227255.
10. Gostiaux, L. & Dauxois, T. 2007 Laboratory experiments on the generation of internal tidal beams over steep slopes. Phys. Fluids 19, 028102.
11. Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42, 123130.
12. Grisouard, N., Staquet, C. & Gerkema, T. 2011 Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study. J. Fluid Mech. 676, 491513.
13. Horn, D. A., Imberger, J. & Ivey, G. N. 2001 The degeneration of large-scale interfacial gravity waves in lakes. J. Fluid Mech. 434, 181207.
14. Jackson, C. 2007 Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). J. Geophys. Res. 112, C11012.
15. Jiang, C. H. & Marcus, P. S. 2009 Selection rules for the nonlinear interaction of internal gravity waves. Phys. Rev. Lett. 102, 124502.
16. King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a stratified fluid. Phys. Fluids 21, 116601.
17. LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean. Elsevier.
18. Mathur, M. & Peacock, T. 2009 Internal wave beam propagation in non-uniform stratifications. J. Fluid Mech. 639, 133152.
19. Maugé, R. & Gerkema, T. 2008 Generation of weakly nonlinear nonhydrostatic internal tides over large topography: a multi-modal approach. Nonlinear Process. Geophys. 15, 233244.
20. Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.
21. Michallet, H. & Barthélemy, E. 1997 Ultrasonic probes and data processing to study interfacial solitary waves. Exp. Fluids 22, 380386.
22. New, A. L. & Da Silva, J. C. B. 2002 Remote-sensing evidence for the local generation of internal soliton packets in the central Bay of Biscay. Deep-Sea Res. 49 (5), 915934.
23. New, A. L. & Pingree, R. D. 1990 Large-amplitude internal soliton packets in the central Bay of Biscay. Deep-Sea Res. 37, 513524.
24. New, A. L. & Pingree, R. D. 1992 Local generation of internal soliton packets in the central Bay of Biscay. Deep-Sea Res. 39, 15211534.
25. Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.
26. Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.
27. Thomas, N. H. & Stevenson, T. N. 1972 A similarity solution for viscous internal waves. J. Fluid Mech. 54, 495506.
28. Thorpe, S. A. 1998 Nonlinear reflection of internal waves at a density discontinuity at the base of the mixed layer. J. Phys. Oceanogr. 28, 18531860.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed