Skip to main content Accessibility help

Solidification of binary aqueous solutions under periodic cooling. Part 1. Dynamics of mushy-layer growth

  • Guang-Yu Ding (a1) (a2), Andrew J. Wells (a3) and Jin-Qiang Zhong (a1)


We present studies of the solidification of binary aqueous solutions that undergo time-periodic cooling from below. We develop an experiment for solidification of aqueous $\text{NH}_{4}\text{Cl}$ solutions, where the temperature of the cooling boundary is modulated as a simple periodic function of time with independent variations of the modulation amplitude and frequency. The thickness of the mushy layer exhibits oscillations about the background growth obtained for constant cooling. We consider the deviation given by the difference between states with modulated and fixed cooling, which increases when the modulation amplitude increases but decreases with increasing modulation frequency. At early times, the deviation amplitude is consistent with a scaling argument for growth with quasi-steady modulation. In situ measurements of the mush temperature reveal thermal waves propagating through the mushy layer, with amplitude decaying with height within the mushy layer, whilst the phase lag behind the cooling boundary increases with height. This also leads to phase lags in the variation of the mushy-layer thickness compared to the boundary cooling. There is an asymmetry of the deviation of mushy-layer thickness: during a positive modulation (where the boundary temperature increases at the start of a cycle) the peak thickness deviation has a greater magnitude than the troughs in a negative modulation mode (where the boundary temperature decreases at the start of the cycle). A numerical model is formulated to describe mushy-layer growth with constant bulk concentration and turbulent heat transport at the mush–liquid interface driven by compositional convection associated with a finite interfacial solid fraction. The model recovers key features of the experimental results at early times, including the propagation of thermal waves and oscillations in mushy-layer thickness, although tends to overpredict the mean thickness.


Corresponding author

Email address for correspondence:


Hide All
Bergman, M. I. & Fearn, D. R. 1994 Chimneys on the Earth’s inner-outer core boundary? Geophys. Res. Lett. 21, 477480.
Brent, A. D., Voller, V. R. & Reid, K. J. 1988 Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transfer 13, 297318.
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford University Press.
Chalmers, B. 1964 Principles of Solidification. Wiley.
Conte, S. D. & Boor, C. W. D. 1989 Elementary Numerical Analysis: An Algorithmic Approach, 3rd edn. McGraw-Hill Higher Education.
Ding, G. Y., Wells, A. J. & Zhong, J.-Q. 2019 Solidification of binary aqueous solutions under periodic cooling. Part 2. Distribution of solid fraction. J. Fluid Mech. 870, 147174.
Feltham, D. L., Untersteiner, N., Wettlaufer, J. S. & Worster, M. G. 2006 Sea ice is a mushy layer. Geophys. Res. Lett. 33, L14501.
Fowler, A. C. 1985 The formation of freckles in binary alloys. IMA J. Appl. Maths 35, 159174.
Hills, R. N., Loper, D. E. & Roberts, P. H. 1983 A thermodynamically consistent model of a mushy zone. Q. J. Mech. Appl. Maths 36, 505539.
Huguet, L., Alboussiere, T., Bergman, M. I., Deguen, R., Labrosse, S. & Lesceur, G. 2016 Structure of a mushy layer under hypergravity with implications for earth’s inner core. Geophys. J. Intl 204, 17291755.
Hunke, E. C., Notz, D., Turner, A. K. & Vancoppenolle, M. 2011 The multiphase physics of sea ice: a review for model developers. Cryosphere 5 (4), 9891009.
Huppert, H. E. & Worster, M. G. 1985 Dynamic solidification of a binary melt. Nature 314, 703707.
Katz, R. & Worster, M. 2008 Simulation of directional solidification, thermochemical convection, and chimney formation in a Hele–Shaw cell. Comput. Phys. 227 (23), 98239840.
Kerr, R. C., Woods, A. W., Worster, M. G. & Huppert, H. E. 1990a Solidification of an alloy cooled from above. Part 2. Non-equilibrium interfacial kinetics. J. Fluid Mech. 217, 331348.
Kerr, R. C., Worster, M. G., Woods, A. W. & Huppert, H. E. 1990b Solidification of an alloy cooled from above. Part 1. Equilibrium growth. J. Fluid Mech. 216, 323342.
Le Bars, M. & Worster, M. G. 2006 Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149173.
Neufeld, J. A. & Wettlaufer, J. S. 2008 An experimental study of shear-enhanced convection in a mushy layer. J. Fluid Mech. 612, 363385.
Notz, D. & Worster, M. G. 2006 A one-dimensional enthalpy model of sea ice. Ann. Glaciol. 44, 123128.
Notz, D. & Worster, M. G. 2008 In situ measurements of the evolution of young sea ice. J. Geophys. Res. 113 (C3), C03001.
Notz, D. & Worster, M. G. 2009 Desalination processes of sea ice revisited. J. Geophys. Res. 114 (C5), C05006.
Peppin, S. S. L., Aussillous, P., Huppert, H. E. & Worster, M. G. 2007 Steady-state mushy layers: experiments and theory. J. Fluid Mech. 570, 6977.
Peppin, S. S. L., Huppert, H. E. & Worster, M. G. 2008 Steady-state solidification of aqueous ammonium chloride. J. Fluid Mech. 599, 465476.10.1017/S0022112008000219
Rees Jones, D. W. & Worster, M. G. 2014 A physically based parameterization of gravity drainage for sea-ice modeling. J. Geophys. Res. Oceans 119 (9), 55995621.
Rizwan-Uddin 1999 A nodal method for phase change moving boundary problem. Intl J. Comput. Fluid Dyn. 11, 211221.
Savović, S. & Caldwell, J. 2003 Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions. Intl J. Heat Mass Transfer 46, 29112916.
Schulze, T. P. & Worster, M. G. 1999 Weak convection, liquid inclusions and the formation of chimneys in mushy layers. J. Fluid Mech. 388, 197215.
Solomon, T. H. & Hartley, R. R. 1998 Measurements of the temperature field of mushy and liquid regions during solidification of aqueous ammonium chloride. J. Fluid Mech. 358, 87106.
Tait, S. & Jaupart, C. 1989 Compositional convection in viscous melts. Nature 338 (6216), 571574.
Tait, S. & Jaupart, C. 1992 Compositional convection in a reactive crystalline mush and melt differentiation. J. Geophys. Res. Oceans 97, 67356756.
Turner, A. K., Hunke, E. C. & Bitz, C. M. 2013 Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res. Oceans 118, 22792294.
Turner, J. S. 1979 Buoyancy Effects in Fluids. Cambridge University Press.
US National Research Council 2003 International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, Norwich, New York.
Wells, A. J., Wettlaufer, J. S. & Orszag, S. A. 2013 Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes. J. Fluid Mech. 716, 203227.
Wettlaufer, J. S., Worster, M. G. & Huppert, H. E. 1997 Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291316.
Wettlaufer, J. S., Worster, M. G. & Huppert, H. E. 2000 Solidification of leads: theory, experiment, and field observations. J. Geophys. Res. 105, 11231134.
Woods, A. W. & Huppert, H. E. 1989 The growth of compositionally stratified solid above a horizontal boundary. J. Fluid Mech. 199, 2953.10.1017/S0022112089000285
Worster, M. G. 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167, 481501.10.1017/S0022112086002938
Worster, M. G. 1997 Convection in mushy layers. Annu. Rev. Fluid Mech. 29, 91122.
Worster, M. G. 2000 Perspectives in Fluid Dynamics: A Collective Introduction to Current Research. pp. 393446. Cambridge University Press.
Worster, M. G. & Kerr, R. C. 1994 The transient behaviour of alloys solidified from below prior to the formation of chimneys. J. Fluid Mech. 269, 2344.
Yang, Y., Verzicco, R. & Lohse, D. 2016 Scaling laws and flow structures of double diffusive convection in the finger regime. J. Fluid Mech. 802, 667689.
Yao, L. S. & Prusa, J. 1989 Melting and freezing. Adv. Heat Transfer 19, 195.
Zhong, J.-Q., Fragoso, A. T., Wells, A. J. & Wettlaufer, J. S. 2012 Finite-sample-size effects on convection in mushy layers. J. Fluid Mech. 704 (2), 89108.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Ding et al. supplementary movie
Shadowgraphy movies that show the growth of mushy layers and the flows in the liquid region in three modulation modes with Φ0=0 (left), constant cooling (middle) and Φ0=π (right). Results for A=15K, τ=4000s. The movies display 400 times faster than the real time.

 Video (63.0 MB)
63.0 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed