Skip to main content Accessibility help
×
Home

Small perturbation evolution in compressible Poiseuille flow: pressure–velocity interactions and obliqueness effects

  • Zhimin Xie (a1), Mona Karimi (a1) (a2) and Sharath S. Girimaji (a1) (a3)

Abstract

Small perturbation evolution in compressible Poiseuille flow is contrasted against the incompressible case using direct simulations and non-modal linear analysis. The onset of compressibility effects leads to a profound change in the behaviour of pressure and its interaction with the velocity field. Linear analysis shows that the most significant compressibility outcome is the harmonic coupling between pressure and wall-normal velocity perturbations. Oscillations in normal perturbations can lead to periods of negative production causing suppression of perturbation growth. The extent of the influence of compressibility can be characterized in terms of an effective gradient Mach number ( $M_{g}^{e}$ ). Analysis shows that $M_{g}^{e}$ diminishes as the angle of the perturbation increases with respect to the shear plane. Direct numerical simulations show that streamwise perturbations, which would lead to Tollmien–Schlichting instability in the incompressible case, are completely suppressed in the compressible case and experience the highest $M_{g}^{e}$ . At the other extreme, computations reveal that spanwise perturbations, which experience negligible $M_{g}^{e}$ , are entirely unaltered from the incompressible case. Perturbation behaviour at intermediate obliqueness angles is established. Moreover, the underlying pressure–velocity interactions are explicated.

Copyright

Corresponding author

Email address for correspondence: monak16mpi@gmail.com

References

Hide All
Baines, P. G., Majumdar, S. J. & Mitsudera, H. 1996 The mechanics of the Tollmien–Schlichting wave. J. Fluid Mech. 312, 107124.
Bertsch, R. L., Suman, S. & Girimaji, S. S. 2012 Rapid distortion analysis of high Mach number homogeneous shear flows: characterization of flow-thermodynamics interaction regimes. Phys. Fluids 24, 125106.
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.
Davey, A. 1973 A simple numerical method for solving Orr–Sommerfeld problems. Q. J. Mech. Appl. Maths 26, 401411.
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.
Gomez, C. A. & Girimaji, S. S. 2013 Toward second-moment closure modelling of compressible shear flows. J. Fluid Mech. 733, 325369.
Gomez, C. A. & Girimaji, S. S. 2014 Explicit algebraic Reynolds stress model (earsm) for compressible shear flows. Theor. Comput. Fluid Dyn. 28 (2), 171196.
Hanifi, A. & Henningson, D. S. 1998 The compressible inviscid algebraic instability for streamwise independent disturbances. Phys. Fluids 10 (8), 17841786.
Heiser, W. H. & Pratt, D. T. 1994 Hypersonic Airbreathing Propulsion. AIAA.
Howarth, L. 1948 Concerning the effect of compressibility on laminar boundary layers and their separation. Proc. R. Soc. Lond. A 194 (1036), 1642.
Karimi, M. & Girimaji, S. S. 2016 Suppression mechanism of Kelvin–Helmholtz instability in compressible fluid flows. Phys. Rev. E 93, 041102.
Kerimo, J. & Girimaji, S. S. 2007 Boltzmann-BGK approach to simulating weakly compressible 3D turbulence: comparison between lattice Boltzmann and gas kinetic methods. J. Turbul. 8 (46), 116.
Kumar, G., Bertsch, R. L. & Girimaji, S. S. 2014 Stabilizing action of pressure in homogeneous compressible shear flows: effect of Mach number and perturbation obliqueness. J. Fluid Mech. 760, 540566.
Kumar, G., Bertsch, R., Venugopal, V. & Girimaji, S. S. 2015 Toward control of compressible shear flows: investigation of possible flow mechanisms. In Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, pp. 397404. World Scientific.
Kumar, G., Girimaji, S. S. & Kerimo, J. 2013 WENO-enhanced gas-kinetic scheme for direct simulations of compressible transition and turbulence. J. Comput. Phys. 234, 499523.
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.
Lavin, T. A., Girimaji, S. S., Suman, S. & Yu, H. 2012 Flow-thermodynamics interactions in rapidly-sheared compressible turbulence. Theor. Comput. Fluid Dyn. 26 (6), 501522.
Lee, K., Venugopal, V. & Girimaji, S. S. 2016 Pressure-strain energy redistribution in compressible turbulence: return-to-isotropy versus kinetic-potential energy equipartition. Phys. Scr. 91, 084006.
Liang, C., Premasuthan, S. & Jameson, A.2009 Large eddy simulation of compressible turbulent channel flow with spectral difference method. AIAA Paper 2009-402.
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids A 3 (11), 26442651.
Livescu, D. & Madnia, C. K. 2004 Small scale structure of homogeneous turbulent shear flow. Phys. Fluids 16 (8), 28642876.
Mack, L. M.1984 Boundary-layer linear stability theory. AGARD Report No. 709.
May, G., Srinivasan, B. & Jameson, A. 2007 An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow. J. Comput. Phys. 220, 856878.
Reddy, J. N. 1984 Energy and Variational Methods in Applied Mechanics. Wiley.
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.
Simone, A., Coleman, G. N. & Cambon, C. 1997 The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech. 330, 307338.
Sivasubramanian, J. & Fasel, H. F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.
Thomson, W. 1887 Stability of fluid motion: rectilinear motion of viscous fluid between two parallel planes. Phil. Mag. 24 (147), 188196.
Tichenor, N. R., Humble, R. A. & Bowersox, R. D. W. 2013 Response of a hypersonic turbulent boundary layer to favourable pressure gradients. J. Fluid Mech. 722, 187213.
Xie, Z. & Girimaji, S. S. 2014 Instability of Poiseuille flow at extreme Mach numbers: linear analysis and simulations. Phys. Rev. E. 89, 043001.
Xu, K. 2001 A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method. J. Comput. Phys. 171 (1), 289335.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed