Adrian, R. J., Meinhart, C. D. & Tomkins, C. D.
2000
Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.
422, 1–54.

Ahn, J., Lee, J. H., Lee, J., Kang, J. & Sung, H. J.
2015
Direct numerical simulation of a 30*R* long turbulent pipe flow at *Re*
_{𝜏} = 3008. Phys. Fluids
27 (6), 065110.

Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H. & Eckelmann, H.
1988
The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids
31 (5), 1026–1033.

Baars, W. J., Hutchins, N. & Marusic, I.
2016
Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids
1 (5), 054406.

Baars, W. J., Hutchins, N. & Marusic, I.
2017
Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech.
823, R2.

Baidya, R., Philip, J., Hutchins, N., Monty, J. P. & Marusic, I.
2017
Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Phys. Fluids
29 (2), 020712.

Bellani, G. & Talamelli, A.
2016
The final design of the long pipe in CICLoPE. In Progress in Turbulence VI, pp. 205–209. Springer.

Bendat, J. S. & Piersol, A. G.
2010
Random Data: Analysis and Measurement Procedures, 4th edn. John Wiley & Sons.

Chandran, D., Baidya, R., Monty, J. P. & Marusic, I.
2017
Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. J. Fluid Mech.
826, R1.

Chauhan, K., Philip, J., de Silva, C. M., Hutchins, N. & Marusic, I.
2014
The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech.
742, 119–151.

Chung, D., Marusic, I., Monty, J. P., Vallikivi, M. & Smits, A. J.
2015
On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Exp. Fluids
56 (7), 1–10.

Davidson, P. A. & Krogstad, P.-Å.
2008
On the deficiency of even-order structure functions as inertial-range diagnostics. J. Fluid Mech.
602, 287–302.

del Álamo, J. C. & Jiménez, J.
2009
Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech.
640, 5–26.

del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D.
2004
Scaling of the energy spectra of turbulent channels. J. Fluid Mech.
500, 135–144.

del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D.
2006
Self-similar vortex clusters in the turbulent logarithmic region. J. Fluid Mech.
561, 329–358.

Hellström, L. H., Marusic, I. & Smits, A. J.
2016
Self-similarity of the large-scale motions in turbulent pipe flow. J. Fluid Mech.
792, R1.

Hutchins, N. & Marusic, I.
2007a
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.

Hutchins, N. & Marusic, I.
2007b
Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A
365, 647–664.

Hutchins, N., Monty, J. P., Ganapathisubramani, B., Ng, H. C. H. & Marusic, I.
2011
Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech.
673, 255–285.

Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S.
2009
Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech.
635, 103–136.

Hwang, Y.
2015
Statistical structure of self-sustaining attached eddies in turbulent channel flow. J. Fluid Mech.
767, 254–289.

Jiménez, J.
2011
Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech.
44 (1), 27.

Jiménez, J., del Álamo, J. C. & Flores, O.
2004
The large-scale dynamics of near-wall turbulence. J. Fluid Mech.
505, 179–199.

Kim, K. C. & Adrian, R. J.
1999
Very large-scale motion in the outer layer. Phys. Fluids
11 (2), 417–422.

Krug, D., Baars, W. J., Hutchins, N. & Marusic, I.
2019
Vertical coherence of turbulence in the atmospheric surface layer: connecting the hypotheses of Townsend and Davenport. Boundary-Layer Meteorol. doi:10.1007/s10546-019-00445-4.
Kwon, Y.2016 The quiesecent core of turbulent channel and pipe flows. PhD thesis, University of Melbourne.

Kwon, Y. S., Hutchins, N. & Monty, J. P.
2016
On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J. Fluid Mech.
794, 5–16.

Ligrani, P. M. & Bradshaw, P.
1987
Spatial resolution and measurments of turbulence in the viscous sublayer using subminature hot-wire probes. Exp. Fluids
5, 407–417.

Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R.
2010
Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids
22 (6), 065103.

Marusic, I. & Monty, J. P.
2019
Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech.
51, 49–74.

Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J.
2013
On the logarithmic region in wall turbulence. J. Fluid Mech.
716, 716.

Mathis, R., Hutchins, N. & Marusic, I.
2009
Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech.
628, 311–337.

Monty, J. P.2005 Developments in smooth wall turbulent duct flows. PhD thesis, The University of Melbourne.

Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S.
2009
A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.
632, 431–442.

Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S.
2007
Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.
589, 147–156.

Morrill-Winter, C., Philip, J. & Klewicki, J.
2017
An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. J. Fluid Mech.
813, 594–617.

Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S.
2005
Evidence of the *k*
_{1}
^{-1} law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett.
95 (7), 074501.

Örlü, R., Fiorini, T., Segalini, A., Bellani, G., Talamelli, A. & Alfredsson, P. H.
2017
Reynolds stress scaling in pipe flow turbulence – first results from CICLoPE. Phil. Trans. R. Soc. Lond. A
375 (2089), 20160187.

Perry, A. E. & Chong, M. S.
1982
On the mechanism of wall turbulence. J. Fluid Mech.
119, 173–217.

Perry, A. E., Marusic, I. & Jones, M. B.
2002
On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients. J. Fluid Mech.
461, 61–91.

Piomelli, U., Balint, J.-L. & Wallace, J. M.
1989
On the validity of Taylor’s hypothesis for wall-bounded flows. Phys. Fluids
1 (3), 609–611.

Robinson, S. K.
1991
Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.
23 (1), 601–639.

Sillero, J. A., Jiménez, J. & Moser, R. D.
2014
Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to 𝛿^{+} ≈ 2000. Phys. Fluids
26 (10), 105109.

de Silva, C. M., Gnanamanickam, E. P., Atkinson, C., Buchmann, N. A., Hutchins, N., Soria, J. & Marusic, I.
2014
High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. Phys. Fluids
26 (2), 025117.

de Silva, C. M., Marusic, I., Woodcock, J. D. & Meneveau, C.
2015
Scaling of second- and higher-order structure functions in turbulent boundary layers. J. Fluid Mech.
769, 654–686.

Smits, A. J., McKeon, B. J. & Marusic, I.
2011
High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech.
43, 353–375.

Talamelli, A., Persiani, F., Fransson, J. H. M., Alfredsson, P. H., Johansson, A. V., Nagib, H. M., Rüedi, J., Sreenivasan, K. R. & Monkewitz, P. A.
2009
CICLoPE – a response to the need for high Reynolds number experiments. Fluid Dyn. Res.
41 (2), 021407.

Taylor, G. I.
1938
The spectrum of turbulence. Proc. R. Soc. Lond. A
164 (919), 476–490.

Tennekes, H. & Lumley, J. L.
1972
A First Course in Turbulence. MIT Press.

Townsend, A. A.
1976
The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.

Wei, T., Fife, P., Klewicki, J. & McMurtry, P.
2005
Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J. Fluid Mech.
522, 303–327.

Willert, C. E., Soria, J., Stanislas, M., Klinner, J., Amili, O., Eisfelder, M., Cuvier, C., Bellani, G., Fiorini, T. & Talamelli, A.
2017
Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000. J. Fluid Mech.
826, R5.

Yang, X. I. A., Baidya, R., Johnson, P., Marusic, I. & Meneveau, C.
2017
Structure function tensor scaling in the logarithmic region derived from the attached eddy model of wall-bounded turbulent flows. Phys. Rev. Fluids
2 (6), 064602.

Zagarola, M. V. & Smits, A. J.
1998
Mean-flow scaling of turbulent pipe flow. J. Fluid Mech.
373, 33–79.