Skip to main content Accessibility help
×
×
Home

A simple system for moist convection: the Rainy–Bénard model

  • Geoffrey K. Vallis (a1), Douglas J. Parker (a2) and Steven M. Tobias (a3)

Abstract

Rayleigh–Bénard convection is one of the most well-studied models in fluid mechanics. Atmospheric convection, one of the most important components of the climate system, is by comparison complicated and poorly understood. A key attribute of atmospheric convection is the buoyancy source provided by the condensation of water vapour, but the presence of radiation, compressibility, liquid water and ice further complicate the system and our understanding of it. In this paper we present an idealized model of moist convection by taking the Boussinesq limit of the ideal-gas equations and adding a condensate that obeys a simplified Clausius–Clapeyron relation. The system allows moist convection to be explored at a fundamental level and reduces to the classical Rayleigh–Bénard model if the latent heat of condensation is taken to be zero. The model has an exact, Rayleigh-number-independent ‘drizzle’ solution in which the diffusion of water vapour from a saturated lower surface is balanced by condensation, with the temperature field (and so the saturation value of the moisture) determined self-consistently by the heat released in the condensation. This state is the moist analogue of the conductive solution in the classical problem. We numerically determine the linear stability properties of this solution as a function of Rayleigh number and a non-dimensional latent-heat parameter. We also present some two-dimensional, time-dependent, nonlinear solutions at various values of Rayleigh number and the non-dimensional condensational parameters. At sufficiently low Rayleigh number the system converges to the drizzle solution, and we find no evidence that two-dimensional self-sustained convection can occur when that solution is stable. The flow transitions from steady to turbulent as the Rayleigh number or the effects of condensation are increased, with plumes triggered by gravity waves emanating from other plumes. The interior dries as the level of turbulence increases, because the plumes entrain more dry air and because the saturated boundary layer at the top becomes thinner. The flow develops a broad relative humidity minimum in the domain interior, only weakly dependent on Rayleigh number when that is high.

Copyright

Corresponding author

Email address for correspondence: g.vallis@exeter.ac.uk

References

Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.
Ambaum, M. H. P. 2010 Thermal Physics of the Atmosphere. Wiley.
American Meteorological Society2018 Glossary of meteorology. Available online at http://glossary.ametsoc.org/wiki/.
Berlengiero, M., Emanuel, K. A., Von Hardenberg, J., Provenzale, A. & Spiegel, E. A. 2012 Internally cooled convection: a fillip for Philip. Comm. Nonlin. Sci. Num. Sim. 17 (5), 19982007.
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part I. Thermodynamics and ‘linear’ solutions. J. Atmos. Sci. 44 (14), 18091827.
Bretherton, C. S. 1988 A theory for nonprecipitating convection between two parallel plates. Part II. Nonlinear theory and cloud field organization. J. Atmos. Sci. 45 (17), 23912415.
Brun, A. S. & Browning, M. K. 2017 Magnetism, dynamo action and the solar–stellar connection. Living Rev. Solar Phys. 14, 4.
Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M. 2003 Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev. 131 (10), 23942416.
Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D. & Brown, B.2016 Dedalus: flexible framework for spectrally solving differential equations. Astrophysics Source Code Library: http://ascl.net/1603.015.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press; reprinted by Dover Publications, 1981.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.
Christensen, U. 1995 Effects of phase transitions on mantle convection. Annu. Rev. Earth Planet. Sci. 23 (1), 6587.
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 851.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.
Emanuel, K. A., Neelin, J. D. & Bretherton, C. S. 1994 On large-scale circulations in convecting atmospheres. Q. J. R. Meteor. Soc. 120, 11111143.
Frierson, D. M. W., Held, I. M. & Zurita-Gotor, P. 2006 A gray radiation aquaplanet moist GCM. Part 1. Static stability and eddy scales. J. Atmos. Sci. 63, 25482566.
Golubitsky, M., Swift, J. W. & Knobloch, E. 1984 Symmetries and pattern selection in Rayleigh–Bénard convection. Physica D 10 (3), 249276.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Hernandez-Duenas, G., Majda, A. J., Smith, L. M. & Stechmann, S. N. 2013 Minimal models for precipitating turbulent convection. J. Fluid Mech. 717, 576611.
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O., Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A. et al. 2015 Representation of microphysical processes in cloud-resolving models: spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 53 (2), 247322.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.
Lakkaraju, R., Stevens, R., Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2013 Heat transport in bubbling turbulent convection. Proc. Natl Acad. Sci. USA 110 (23), 92379242.
Lohse, D. & Toschi, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90 (3), 034502.
Ludlam, F. H. 1966 Cumulus and cumulonimbus convection. Tellus 18, 687698.
Ludlam, F. H. 1980 Clouds and Storms: The Behavior and Effect of Water in the Atmosphere. Penn. State University Press.
Mahrt, L. 1986 On the shallow motion approximations. J. Atmos. Sci. 43, 10361044.
Marshall, J. C. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.
Mellor, G. L. & Yamada, T. 1974 A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31 (7), 17911806.
Mitchell, J. L. & Lora, J. M. 2016 The climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353380.
Monin, A. S. & Obukhov, A. M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24, 163187.
Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.
O’Gorman, P. A., Allan, R. P., Byrne, M. P. & Previdi, M. 2012 Energetic constraints on precipitation under climate change. Surv. Geophys. 33 (3–4), 585608.
O’Gorman, P. A. & Schneider, T. 2006 Stochastic models for the kinematics of moisture transport and condensation in homogeneous turbulent flows. J. Atmos. Sci. 63, 29923005.
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205214.
Parodi, A., Emanuel, K. A. & Provenzale, A. 2003 Plume patterns in radiative–convective flows. New J. Phys. 5 (1), 106.
Parsons, B. & McKenzie, D. 1978 Mantle convection and the thermal structure of the plates. J. Geo. Res.: Sol. Earth 83 (B9), 44854496.
Pauluis, O. & Schumacher, J. 2010 Idealized moist Rayleigh–Bénard convection with piecewise linear equation of state. Commun. Math. Sci. 8 (1), 295319.
Pauluis, O. & Schumacher, J. 2011 Self-aggregation of clouds in conditionally unstable moist convection. Proc. Natl Acad. Sci. USA 108 (31), 1262312628.
Pierrehumbert, R. T., Brogniez, H. & Roca, R. 2007 On the relative humidity of the atmosphere. In The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges (ed. Schneider, T. & Sobel, A.), pp. 143185. Princeton University Press.
Rayleigh, Lord 1916 On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Lond. Edinb. Dublin Phil. Mag. J. Sci. 32 (192), 529546.
Roche, P.-E., Castaing, B., Chabaud, B. & Hébral, B. 2001 Observation of the 1/2 power law in Rayleigh–Bénard convection. Phys. Rev. E 63 (4), 045303.
Romps, D. M. 2014 An analytical model for tropical relative humidity. J. Clim. 27 (19), 74327449.
Schmidt, L. E., Oresta, P., Toschi, F., Verzicco, R., Lohse, D. & Prosperetti, A. 2011 Modification of turbulence in Rayleigh–Bénard convection by phase change. New J. Phys. 13 (2), 025002.
Schubert, G. & Soderlund, K. M. 2011 Planetary magnetic fields: observations and models. Phys. Earth Plan. Interiors 187, 92108.
Schubert, W. H., Hausman, S. A., Garcia, M., Ooyama, K. V. & Kuo, H.-C. 2001 Potential vorticity in a moist atmosphere. J. Atmos. Sci. 58, 31483157.
Schumacher, J. & Pauluis, O. 2010 Buoyancy statistics in moist turbulent Rayleigh–Bénard convection. J. Fluid Mech. 648, 509519.
Scorer, R. S. & Ludlam, F. H. 1953 Bubble theory of penetrative convection. Q. J. R. Meteor. Soc. 79, 94103.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. Part I. The basic experiment. Mon. Wea. Rev. 91 (3), 99164.
Smith, R. K.(Ed.) 2013 The Physics and Parameterization of Moist Atmospheric Convection. Springer.
Spiegel, E. A. 1971 Convection in stars. Part I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9 (1), 323352.
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447. (Correction: Astrophys. J., 135, 655–656.)
Spyksma, K., Bartello, P. & Yau, M. K. 2006 A Boussinesq moist turbulence model. J. Turbul. 7, N32.
Sukhatme, J. & Young, W. R. 2011 The advection–condensation model and water-vapour probability density functions. Q. J. R. Meteor. Soc. 137, 15611572.
Tompkins, A. M. 2001 Organization of tropical convection in low vertical wind shears: the role of cold pools. J. Atmos. Sci. 58 (13), 16501672.
Tsang, Y.-K. & Vanneste, J. 2017 The effect of coherent stirring on the advection–condensation of water vapour. Proc. R. Soc. Lond. A 473, 20170196.
Vallis, G. K. 2017 Atmospheric and Oceanic Fluid Dynamics, 2nd edn. Cambridge University Press.
Weidauer, T., Pauluis, O. & Schumacher, J. 2011 Rayleigh–Bénard convection with phase changes in a Galerkin model. Phys. Rev. E 84 (4), 046303.
White, B., Gryspeerdt, E., Stier, P., Morrison, H., Thompson, G. & Kipling, Z. 2017 Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys. 17, 1214512175.
Whitehead, J. P. & Doering, C. R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 (24), 244501.
Zhao, M., Golaz, J.-C., Held, I. M., Ramaswamy, V., Lin, S.-J., Ming, Y., Ginoux, P., Wyman, B., Donner, L. J., Paynter, D. et al. 2016 Uncertainty in model climate sensitivity traced to representations of cumulus precipitation microphysics. J. Clim. 29 (2), 543560.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
VIDEO
Movies

Vallis et al. supplementary movie 1
The evolution from the initial conditions for the four variables, b, q, T and u for Ra = 2 x 10^5 (i.e., Rayleigh number = 200,000). See text for more description.

 Video (9.8 MB)
9.8 MB
VIDEO
Movies

Vallis et al. supplementary movie 2
Same but for Ra = 2 x 10^7 (i.e., Rayleigh number = 20,000,000).

 Video (2.5 MB)
2.5 MB
VIDEO
Movies

Vallis et al. supplementary movie 3
Same but for Ra = 5 x 10^7 (i.e., Rayleigh number = 50,000,000).

 Video (15.5 MB)
15.5 MB
VIDEO
Movies

Vallis et al. supplementary movie 4
Same but for Ra = 2.5 x 10^8 (i.e., Rayleigh number = 250,000,000).

 Video (8.4 MB)
8.4 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed