Skip to main content Accessibility help
×
Home

Shock waves in microchannels

  • G. Mirshekari (a1), M. Brouillette (a1), J. Giordano (a2), C. Hébert (a1), J.-D. Parisse (a2) and P. Perrier (a2)...

Abstract

A fully instrumented microscale shock tube, believed to be the smallest to date, has been fabricated and tested. This facility is used to study the transmission of a shock wave, produced in a large (37 mm) shock tube, into a 34  $\mathrm{\mu} \mathrm{m} $ hydraulic diameter and 2 mm long microchannel. Pressure microsensors of a novel design, with gigahertz bandwidth, are used to obtain pressure–time histories of the microchannel shock wave at five axial stations. In all cases the transmitted shock wave is found to be weaker than the incident shock wave, and is observed to decay both in pressure and velocity as it propagates down the microchannel. These results are compared with various analytical and numerical models, and the best agreement is obtained with a Navier–Stokes computational fluid dynamics computation, which assumes a no-slip isothermal wall boundary condition; good agreement is also obtained with a simple shock tube laminar boundary layer model. It is also found that the flow developing within the microchannel is highly dependent on conditions at the microchannel entrance, which control the mass flux entering into the device. Regardless of the micrometre dimensions of the present facility, shock wave propagation in a microchannel of that scale exhibits a behaviour similar to that observed in large-scale facilities operated at low pressures, and the shock attenuation can be explained in terms of accepted laminar boundary models.

Copyright

Corresponding author

Email address for correspondence: Martin.Brouillette@USherbrooke.ca

References

Hide All
Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. 1997 Gaseous slip flow in long microchannels. J. Microelectromech. Syst. 6 (2), 167178.
Austin, J. & Bodony, D. J. 2011 Wave propagation in gaseous small-scale channel flows. Shock Waves 21 (6), 547557.
Brouillette, M. 1991 Design modifications to T5 and their implementation. Tech. Rep. FM 91-3. Graduate Aeronautical Laboratories, California Institute of Technology.
Brouillette, M. 2003 Shock waves at microscales. Shock Waves 13 (1), 312.
Burtschell, Y., Cardoso, M. & Zeitoun, D. E. 2001 Numerical analysis of the reducing driver gas contamination in impulse shock tunnels. AIAA J. 12, 23572365.
Colin, S. 2005 Rarefaction and compressibility effects on steady and transient gas flows in microchannels. Microfluid Nanofluid 1 (8), 268279.
Courant, R., Friedrichs, K. & Lewy, H. 1928 Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100 (1), 3274.
Dolling, D. S. 2001 Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA J. 39 (8), 15171531.
Duff, R. E. 1959 Shock-tube performance at low initial pressure. Phys. Fluids 2 (2), 207216.
Garen, W., Meyerer, B., Udagawa, S. & Maeno, K. 2009 Shock waves in mini-tubes: influence of the scaling parameter s. In Proceedings of 26th International Symposium on Shock Waves (ed. Hanneman, K. & Seiler, F.), pp. 14731478. Springer.
Giordano, J., Parisse, J. D. & Perrier, P. 2008 Numerical study of an original device to generate compressible flow in microchannels. Phys. Fluids 20, 096101.
Guo, Z.-Y. & Li, Z.-X. 2003 Size effect on microscale single-phase flow and heat transfer. Intl J. Heat Mass Transfer 46 (1), 149159.
Iancu, F. & Muller, N. 2006 Efficiency of shock wave compression in a microchannel. Microfluid. Nanofluid. 2 (3), 5063.
Kirchhoff, C. 1868 Ueber den einçuss der warmeleitung in einem gase auf die schallbewegung. Pogg. Ann. 134, 177193.
Laporte, O. 1955 On the interaction of a shock with a constriction. Tech. Rep. LA-1740. Los Alamos Scientific Laboratory.
Lee, J. J., Frost, D. L., Lee, J. H. S. & Dremin, A. 1995 Propagation of nitromethane detonations in porous media. Shock Waves 5, 115119.
Levy, A., Soreka, S., Ben-Dor, G. & Skews, B. 1996 Waves propagation in saturated rigid porous media: analytical model and comparison with experimental results. Fluid Dyn. Res. 17, 4965.
Mahesh, K., Lele, S. K. & Moin, P. 1997 The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353379.
Martel, E. & Brouillette, M. 2003 Micro-blast waves at subatmospheric pressures. Comput. Fluid Dyn. 12 (2), 2334.
Mirels, H. 1957 Attenuation in a shock tube due to unsteady-boundary-layer action. Tech. Rep. TN 1333. National Advisory Committee for Aeronautics.
Mirels, H. 1966 Correlation fomulas for laminar shock tube boundary layer. Phys. Fluids 9 (7), 12651272.
Mirshekari, G. 2008 Microscale shock tube. PhD thesis, University of Sherbrooke.
Mirshekari, G. & Brouillette, M. 2009 One-dimensional model for microscale shock tube flow. Shock Waves 19 (1), 2538.
Mirshekari, G. & Brouillette, M. 2012 Microscale shock tube. J. Microelectromech. Syst. 99, 110.
Ngomo, D., Chaudhuri, A., Chinnayya, A. & Hadjadj, A. 2010 Numerical study of shock propagation and attenuation in narrow tubes including friction and heat losses. Comput. Fluids 39, 17111721.
Parisse, J. D., Giordano, J., Perrier, P., Burtschell, Y. & Graur, I. A. 2009 Numerical investigation of micro shock waves generation. Microfluid. Nanofluid. 6 (5), 699709.
Quirk, J. J. 1998 Amrita—A computational facility (for CFD modelling). In VKI 29th CFD Lecture Series, von Kármán Institute for Fluid Dynamics, Brussels, 23–27 February 1998.
Roshko, A. 1960 On flow duration in low-pressure shock tubes. Phys. Fluids 3 (6), 835842.
Russell, D. A. 1966 Shock-wave strengthening by area convergence. J. Fluid Mech. 27, 305314.
Squires, T. M. & Quake, S. R. 2005 Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77 (3), 9771026.
Stewart, D. S. 2002 Towards the miniaturization of explosive technology. Shock Waves 11, 467473.
Takayama, K. 1999 Applications of shock wave research to medicine. In Proceedings of 22nd International Symposium on Shock Waves (ed. G. J. Ball, R. Hillier & G. T. Roberts), pp. 321–326.
Udagawa, S., Garen, W., Meyerer, B. & Maeno, K. 2008 Motion analysis of a diaphragmless driver section for a narrow channel shock tube. Shock Waves 18 (5), 345351.
Zeitoun, D. E. & Burtschel, Y. 2006 Navier-stokes computations in micro shock tubes. Shock Waves 15 (3–4), 241246.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Shock waves in microchannels

  • G. Mirshekari (a1), M. Brouillette (a1), J. Giordano (a2), C. Hébert (a1), J.-D. Parisse (a2) and P. Perrier (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed