Skip to main content Accessibility help

Shear-induced diffusion of red blood cells in a semi-dilute suspension

  • T. Omori (a1), T. Ishikawa (a2), Y. Imai (a2) and T. Yamaguchi (a1)


The diffusion of red blood cells (RBCs) in blood is important to the physiology and pathology of the cardiovascular system. In this study, we investigate flow-induced diffusion of RBCs in a semi-dilute system by calculating the pairwise interactions between RBCs in simple shear flow. A capsule with a hyperelastic membrane was used to model an RBC. Its deformation was resolved using the finite element method, whereas fluid motion inside and outside the RBC was solved using the boundary element method. The results show that shear-induced RBC diffusion is significantly anisotropic, i.e. the velocity gradient direction component is larger than the vorticity direction. We also found that the motion of RBCs during the interaction is strongly dependent on the viscosity ratio of the internal to external fluid, and the diffusivity decreases monotonically as the viscosity ratio increases. The scaling argument also suggests that the diffusivity is proportional to the shear rate and haematocrit, if the suspension is in a semi-dilute environment and the capillary number is invariant. These fundamental findings are useful to understand transport phenomena in blood flow.


Corresponding author

Email address for correspondence:


Hide All
Barthés-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.
Barthés-Biesel, D., Walter, J. & Salsac, A. V. 2010 Computational hydrodynamics of capsules and biological cells. In Flow-Induced Deformation of Artificial Capsules. Taylor & Francis.
Batchelor, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97117.
Batchelor, G. K. & Green, J. T. 1972a The determination of the bulk stress in a suspension of spherical particles to order ${c}^{2} $ . J. Fluid Mech. 56, 401427.
Batchelor, G. K. & Green, J. T. 1972b The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid Mech. 56, 375400.
Chaffey, C. E. & Brenner, H. 1967 A second-order theory for shear deformation of drops. J. Colloid Interface Sci. 24, 258269.
Einstein, A. 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322, 549560.
Evans, E. A. & Fung, Y. C. 1972 Improved measurements of the erythrocyte geometry. Microvasc. Res. 4, 335347.
Foessel, E., Walter, J., Salsac, A.-V. & Barthès-Biesel, D. 2011 Influence of internal viscosity on the deformation of a spherical capsule in a simple shear flow. J. Fluid Mech. 672, 472486.
Goldsmith, H. L. & Karino, T. 1977 Microscope considerations: the motions of individual particles. Ann. N.Y. Acad Sci. 1283, 241255.
Helfrich, W. 1973 Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28, 693703.
Hochmuth, R. M. & Waugh, R. E. 1987 Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol. 49, 209219.
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.
Ishikawa, T. & Yamaguchi, T. 2008 Shear-induced fluid-tracer diffusion in a semi-dilute suspension of spheres. Phys. Rev. E 77, 041402.
Lac, E., Morel, A. & Barthès-Biesel, D. 2007 Hydrodynamic interaction between two identical capsules in simple shear flow. J. Fluid Mech. 573, 149169.
Lima, R., Ishikawa, T., Imai, Y., Takeda, M., Wada, S. & Yamaguchi, T. 2008 Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry. J. Biomech. 41, 21882196.
Loewenberg, M. & Hinch, E. J. 1997 Collision of two deformable drops in shear flow. J. Fluid Mech. 338, 299315.
Omori, T., Imai, Y., Yamaguchi, T. & Ishikawa, T. 2012a Reorientation of a non-spherical capsule in creeping shear flow. Phys. Rev. Lett. 108, 138102.
Omori, T., Ishikawa, T., Barthés-Biesel, D., Salsac, A.-V., Imai, Y. & Yamaguchi, T. 2012b Tension of red blood cell membrane in simple shear flow. Phys. Rev. E 86, 056321.
Omori, T., Ishikawa, T., Barthès-Biesel, D., Salsac, A.-V., Walter, J., Imai, Y. & Yamaguchi, T. 2011 Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow. Phys. Rev. E 83, 041918.
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Puig-de-Morales-Marinkovic, M., Turner, K. T., Butler, J. P., Fredberg, J. J. & Suresh, S. 2007 Viscoelasticity of the human red blood cell. Am. J. Physiol. Cell Physiol. 293, 597605.
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 361, 117143.
Ross, R. & Harker, L. 1976 Hyperlipidemia and atherosclerosis. Science 193, 10941100.
Ruggeri, Z. M. 2003 Von Willebrand factor, platelets and endothelial cell interactions. J. Thrombosis Haemostasis 1, 13351342.
Saadatmand, M., Ishikawa, T., Matsuki, N., Abdekhodaie, M. J., Imai, Y., Ueno, H. & Yamaguchi, T. 2011 Fluid particle diffusion through high-hematocrit blood flow within a capillary tube. J. Biomech. 44, 170175.
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13, 245264.
Tarbell, J. M. 2003 Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Engng 5, 79118.
Walter, J., Salsac, A.-V. & Barthès-Biesel, D. 2011 Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shape. J. Fluid Mech. 676, 318347.
Walter, J., Salsac, A.-V., Barthès-Biesel, D. & Tallec, P. L. 2010 Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. Intl J. Numer. Meth. Engng 83, 829850.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Shear-induced diffusion of red blood cells in a semi-dilute suspension

  • T. Omori (a1), T. Ishikawa (a2), Y. Imai (a2) and T. Yamaguchi (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed