Skip to main content Accessibility help
×
Home

Shear-flow dispersion in turbulent jets

  • John Craske (a1), Antoine L. R. Debugne (a1) (a2) and Maarten van Reeuwijk (a1)

Abstract

We investigate the transport of a passive scalar in a fully developed turbulent axisymmetric jet at a Reynolds number of $\mathit{Re}=4815$ using data from direct numerical simulation. In particular, we simulate the response of the concentration field to an instantaneous variation of the scalar flux at the source. To analyse the time evolution of this statistically unsteady process we take an ensemble average over 16 independent simulations. We find that the evolution of $C_{m}(z,t)$ , the radial integral of the ensemble-averaged concentration, is a self-similar process, with the front position and spread both scaling as $\sqrt{t}$ . The longitudinal mixing of $C_{m}$ is shown to be primarily caused by shear-flow dispersion. Using the approach developed by Craske & van Reeuwijk (J. Fluid Mech., vol. 763, 2014, pp. 538–566), the classical theory for shear-flow dispersion is applied to turbulent jets to obtain a closure that couples the integral scalar flux to the integral concentration $C_{m}$ . Model predictions using the dispersion closure are in good agreement with the simulation data. Application of the dispersion closure to a two-dimensional jet results in an integral transport equation that is fully consistent with that of Landel et al. (J. Fluid Mech., vol. 711, 2012, pp. 212–258).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Shear-flow dispersion in turbulent jets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Shear-flow dispersion in turbulent jets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Shear-flow dispersion in turbulent jets
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: john.craske07@imperial.ac.uk

References

Hide All
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 6777.
Brenner, H. 1979 Taylor dispersion in systems of sedimenting nonspherical Brownian particles. I. Homogeneous, centrosymmetric, axisymmetric particles. J. Colloid Interface Sci. 71 (2), 189208.
Brenner, H. 1980a Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297 (1430), 81133.
Brenner, H. 1980b A general theory of Taylor dispersion phenomena. Physico-Chem. Hydrodyn. 1, 91123.
Chatwin, P. C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43, 321352.
Chatwin, P. C. 1977 The initial development of longitudinal dispersion in straight tubes. J. Fluid Mech. 80, 3348.
Chatwin, P. C. & Allen, C. M. 1985 Mathematical models of dispersion in rivers and estuaries. Annu. Rev. Fluid Mech. 17 (1), 119149.
Craske, J. & van Reeuwijk, M. 2013 Robust and accurate open boundary conditions for incompressible turbulent jets and plumes. Comput. Fluids 86, 284297.
Craske, J. & van Reeuwijk, M. 2015a Energy dispersion in turbulent jets. Part 1. Direct simulation of steady and unsteady jets. J. Fluid Mech. 763, 500537.
Craske, J. & van Reeuwijk, M. 2015b Energy dispersion in turbulent jets. Part 2. A robust model for unsteady jets. J. Fluid Mech. 763, 538566.
Elder, J. W. 1959 The dispersion of marked fluid in turbulent shear flow. J. Fluid Mech. 5, 544560.
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. 1979 Mixing in Inland and Coastal Waters. Academic.
Gill, W. N. 1967 A note on the solution of transient dispersion problems. Proc. R. Soc. Lond. A 298 (1454), 335339.
Haynes, P. H. & Vanneste, J. 2014 Dispersion in the large-deviation regime. Part 1: shear flows and periodic flows. J. Fluid Mech. 745, 321350.
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.
Kotsovinos, N. E. 1978 A note on the conservation of the volume flux in free turbulence. J. Fluid Mech. 86, 201203.
Kotsovinos, N. E. & List, E. J. 1977 Plane turbulent buoyant jets. Part 1. Integral properties. J. Fluid Mech. 81 (01), 2544.
Landel, J. R., Caulfield, C. P. & Woods, A. W. 2012 Streamwise dispersion and mixing in quasi-two-dimensional steady turbulent jets. J. Fluid Mech. 711, 212258.
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234 (1196), 123.
Paranthoen, P., Fouari, A., Dupont, A. & Lecordier, J. C. 1988 Dispersion measurements in turbulent flows (boundary layer and plane jet). Intl J. Heat Mass Transfer 31, 153165.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rajaratnam, N. 1976 Turbulent Jets. Elsevier Scientific.
Shapiro, M. & Brenner, H. 1986 Taylor dispersion of chemically reactive species: irreversible first-order reactions in bulk and on boundaries. Chem. Engng Sci. 41 (6), 14171433.
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186203.
Taylor, G. I. 1954a Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. A 225 (1163), 473477.
Taylor, G. I. 1954b The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 223 (1155), 446468.
Tong, C. & Warhaft, Z. 1995 Passive scalar dispersion and mixing in a turbulent jet. J. Fluid Mech. 292, 138.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 203240.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Shear-flow dispersion in turbulent jets

  • John Craske (a1), Antoine L. R. Debugne (a1) (a2) and Maarten van Reeuwijk (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.