Allen, M. D. & Raabe, O. G.
1982
Re-evaluation of Millikan’s oil drop data for the motion of small particles in air. J. Aerosol. Sci.
13 (6), 537–547.

Asmolov, E. S.
1999
The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech.
381, 63–87.

Bird, G. A.
1994
Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Oxford University Press.

Bird, R. B., Hirschfelder, J. O. & Curtiss, C. F.
1954
Molecular Theory of Gases and Liquids. Wiley.

Britz, D. A. & Khlobystov, A. N.
2006
Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev.
35 (7), 637–659.

Bretherton, F. P.
1962
The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech.
14, 284–304.

Chapman, S. & Cowling, T. G.
1970
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press.

Cherukat, P. & McLaughlin, J. B.
1994
The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J. Fluid Mech.
263, 1–18.

Cox, R. G.
1971
The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech.
45, 625–657.

Dong, R. Y. & Cao, B. Y.
2014
Anomalous orientations of a rigid carbon nanotube in a sheared fluid. Sci. Rep.
4, 6120.

Dong, R. Y. & Cao, B. Y.
2015
Superhigh-speed unidirectional rotation of a carbon nanotube in a sheared fluid and its decoupled dynamics. RSC Adv.
5 (108), 88719–88724.

Fan, F. G. & Ahmadi, G.
2000
Wall deposition of small ellipsoids from turbulent air flows: a Brownian dynamics simulation. J. Aerosol Sci.
31 (10), 1205–1229.

Fan, F. G., Soltani, M., Ahmadi, G. & Hart, S. C.
1997
Flow-induced resuspension of rigid-link fibers from surfaces. Aerosol Sci. Technol.
27 (2), 97–115.

Feng, Y. & Kleinstreuer, C.
2013
Analysis of non-spherical particle transport in complex internal shear flows. Phys. Fluids
25 (9), 091904.

Garcia-Ybarra, P. & Rosner, D. E.
1989
Thermophoretic properties of nonspherical particles and large molecules. AIChE J.
35 (1), 139–147.

Gavze, E. & Shapiro, M.
1998
Motion of inertial spheroidal particles in a shear flow near a solid wall with special application to aerosol transport in microgravity. J. Fluid Mech.
371, 59–79.

Girifalco, L. A., Hodak, M. & Lee, R. S.
2000
Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B
62 (19), 13104.

Harper, E. Y. & Chang, I. D.
1968
Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech.
33, 209–225.

Högberg, S. M., Åkerstedt, H. O., Lundström, T. S & Freund, J. B.
2010
Respiratory deposition of fibers in the non-inertial regime: development and application of a semi-analytical model. Aerosol Sci. Technol.
44, 847–860.

Jeffery, G. B.
1922
The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A
102 (715), 161–179.

Ji, C., Dames, E., Wang, Y. L., Wang, H. & Egolfopoulos, F. N.
2010
Propagation and extinction of premixed C_{5} –C_{12}
*n*-alkane flames. Combust. Flame
157 (2), 277–287.

Jung, H., Han, K., Mulholland, G. W., Pui, D. Y. & Kim, J. H.
2013
Effect of the surface energy of particle materials on the accommodation of gas molecules to the particle surfaces. J. Aerosol. Sci.
65, 42–48.

Kleinstreuer, C. & Feng, Y.
2013
Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics: a review. J. Biomech. Engng
135 (2), 021008.

Kleinstreuer, C., Zhang, Z. & Donohue, J. F.
2008a
Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Engng
10, 195–220.

Kleinstreuer, C., Zhang, Z. & Li, Z.
2008b
Modeling airflow and particle transport/deposition in pulmonary airways. Respir. Physiol. Neurobiol.
163 (1–3), 128–138.

Kröger, M. & Hütter, M.
2006a
Unifying kinetic approach to phoretic forces and torques onto moving and rotating convex particles. J. Chem. Phys.
125 (4), 044105.

Kröger, M. & Hütter, M.
2006b
Symbolic computation of the phoretic acceleration of convex particles suspended in a non-uniform gas. Comput. Phys. Commun.
175 (10), 650–664.

Laiho, P., Mustonen, K., Ohno, Y., Maruyama, S. & Kauppinen, E. I.
2017
Dry and direct deposition of aerosol-synthesized single-walled carbon nanotubes by thermophoresis. ACS Appl. Mater. Interfaces
9 (24), 20738–20747.

Leal, L. G.
1980
Particle motions in a viscous fluid. Annu. Rev. Fluid Mech.
12 (1), 435–476.

Li, Z. & Wang, H.
2003a
Drag force, diffusion coefficient, and electric mobility of small particles. Part I. Theory applicable to the free-molecule regime. Phys. Rev. E
68 (2), 061206.

Li, Z. & Wang, H.
2003b
Drag force, diffusion coefficient, and electric mobility of small particles. Part II. Application. Phys. Rev. E
68 (6), 061207.

Li, Z. & Wang, H.
2004
Thermophoretic force and velocity of nanoparticles in the free molecule regime. Phys. Rev. E
70 (2), 021205.

Li, Z. & Wang, H.
2005
Gas–nanoparticle scattering: a molecular view of momentum accommodation function. Phys. Rev. Lett.
95 (1), 014502.

Liu, C., Li, Z. & Wang, H.
2016a
Drag force and transport property of a small cylinder in free molecule flow: a gas-kinetic theory analysis. Phys. Rev. E
94 (2), 023102.

Liu, C., McGivern, W. S., Manion, J. A. & Wang, H.
2016b
Theory and experiment of binary diffusion coefficient of *n*-alkanes in dilute gases. J. Phys. Chem. A
120 (41), 8065–8074.

Liu, C., Zhao, R., Xu, R., Egolfopoulos, F. N. & Wang, H.
2017
Binary diffusion coefficients and non-premixed flames extinction of long-chain alkanes. Proc. Combust. Inst.
36 (1), 1523–1530.

Liu, N. & Bogy, D. B.
2008
Forces on a rotating particle in a shear flow of a highly rarefied gas. Phys. Fluids
20 (10), 107102.

Liu, N. & Bogy, D. B.
2009
Forces on a spherical particle with an arbitrary axis of rotation in a weak shear flow of a highly rarefied gas. Phys. Fluids
21 (4), 047102.

Loth, E.
2008
Lift of a spherical particle subject to vorticity and/or spin. AIAA J.
46 (4), 801–809.

Luo, S., Wang, J., Xia, G. & Li, Z.
2016a
Lift force on nanoparticles in shear flows of dilute gases: negative or positive?
J. Fluid Mech.
795, 443–454.

Luo, S., Wang, J., Xia, G. & Li, Z.
2016b
Lift force on spherical nanoparticles in shear flows of rarefied binary gas mixtures. J. Fluid Mech.
809, 345–359.

Massoudi, M.
2002
On the importance of material frame-indifference and lift forces in multiphase flows. Chem. Engng Sci.
57 (17), 3687–3701.

McLaughlin, J. B.
1989
Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids A
1 (7), 1211–1224.

Millikan, R. A.
1923
The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev.
22 (1), 1–23.

Okada, Y., Nishiumi, K., Ueno, S., Kawabata, T. & Kudoh, S.
2011
Accuracy of nanoparticle diameters measured with a differential mobility analyzer in free-molecule regime. Earozoru Kenkyu
26 (3), 242–246.

Prabha, S. K. & Sathian, S. P.
2012
Determination of accommodation coefficients of a gas mixture in a nanochannel with molecular dynamics. Microfluid Nanofluid
13 (6), 883–890.

Saffman, P. G. T.
1965
The lift on a small sphere in a slow shear flow. J. Fluid Mech.
22, 385–400.

Tian, L., Ahmadi, G., Wang, Z. & Hopke, P. K.
2012
Transport and deposition of ellipsoidal fibers in low Reynolds number flows. J. Aerosol. Sci.
45, 1–18.

Wang, J. & Li, Z.
2011
Thermophoretic force on micro-and nanoparticles in dilute binary gas mixtures. Phys. Rev. E
84 (2), 021201.

Wang, J. & Li, Z.
2012
Negative thermophoresis of nanoparticles in the free molecular regime. Phys. Rev. E
86 (1), 011201.

Wang, J., Luo, S. & Xia, G.
2017
Thermophoretic force on nanocylinders in the free molecule regime. Phys. Rev. E
95 (3), 033101.

Wang, J., Yu, S., Luo, S., Xia, G. D. & Zong, L. X.
2018
Lift forces on an axial symmetry particle rotating in a linear shear flow of a rarefied gas. Phys. Fluids (submitted).

Watanabe, Y., Yamaguchi, H., Hashinokuchi, M., Sawabe, K., Maruyama, S., Matsumoto, Y. & Shobatake, K.
2006
Energy transfer in hyperthermal Xe–graphite surface scattering. Eur. Phys. J. D
38 (1), 103–109.

Wong, R. Y., Liu, C., Wang, J., Chao, C. Y. & Li, Z.
2012
Evaluation of the drag force on single-walled carbon nanotubes in rarefied gases. J. Nanosci. Nanotechnol.
12 (3), 2311–2319.

Yamaguchi, H., Matsuda, Y. & Niimi, T.
2017
Molecular dynamics study on characteristics of energy and tangential momentum accommodation coefficients. Phys. Rev. E
96 (1), 013116.

Yang, L., Bian, J. J. & Wang, G. F.
2017
Impact of atomic-scale surface morphology on the size-dependent yield stress of gold nanoparticles. J. Phys. D: Appl. Phys.
50, 245302.

Yin, C., Rosendahl, L., Kær, S. K. & Sørensen, H.
2003
Modelling the motion of cylindrical particles in a nonuniform flow. Chem. Engng Sci.
58 (15), 3489–3498.

Zhang, Y., Li, S., Yan, W. & Yao, Q.
2012
Nanoparticle transport and deposition in boundary layer of stagnation-point premixed flames. Powder Technol.
227, 24–34.

Zhao, B., Zhang, Y., Li, X., Yang, X. & Huang, D.
2004
Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Build. Environ.
39 (1), 1–8.

Zheng, X. & Silber-Li, Z.
2009
The influence of Saffman lift force on nanoparticle concentration distribution near a wall. Appl. Phys. Lett.
95 (12), 124105.

Zou, X. Y., Cheng, H., Zhang, C. L. & Zhao, Y. Z.
2007
Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain. Geomorphology
90 (1–2), 11–22.