Skip to main content Accessibility help
×
Home

The shape evolution of liquid droplets in miscible environments

  • Daniel J. Walls (a1), Eckart Meiburg (a2) (a3) and Gerald G. Fuller (a1)

Abstract

Miscible liquids often come into contact with one another in natural and technological situations, commonly as a drop of one liquid present in a second, miscible liquid. The shape of a liquid droplet present in a miscible environment evolves spontaneously in time, in a distinctly different fashion than drops present in immiscible environments, which have been reported previously. We consider drops of two classical types, pendant and sessile, in building upon our prior work with miscible systems. Here we present experimental findings of the shape evolution of pendant drops along with an expanded study of the spreading of sessile drops in miscible environments. We develop scalings considering the diffusion of mass to group volumetric data of the evolving pendant drops and the diffusion of momentum to group leading-edge radial data of the spreading sessile drops. These treatments are effective in obtaining single responses for the measurements of each type of droplet, where the volume of a pendant drop diminishes exponentially in time and the leading-edge radius of a sessile drop grows following a power law of $t^{1/2}$ at long times. A complementary numerical approach to compute the concentration and velocity fields of these systems using a simplified set of governing equations is paired with our experimental findings.

Copyright

Corresponding author

Email address for correspondence: ggf@stanford.edu

Footnotes

Hide All

Present address: UC, Santa Barbara, USA.

Footnotes

References

Hide All
Acrivos, A. & Goddard, J. D. 1965 Asymptotic expansions for laminar forced-convection heat and mass transfer. J. Fluid Mech. 23 (2), 273291.
Balasubramaniam, R., Rashidnia, N., Maxworthy, T. & Kuang, J. 2005 Instability of miscible interfaces in a cylindrical tube. Phys. Fluids 17 (5), 052103.
Bejan, A. 2013 Convection Heat Transfer. Wiley.
Cazabat, A. 1987 How does a droplet spread? Contemp. Phys. 28 (4), 347364.
Chen, C. & Meiburg, E. 1996 Miscible displacements in capillary tubes. Part 2. Numerical simulations. J. Fluid Mech. 326, 5790.
Chen, C. & Meiburg, E. 2002 Miscible displacements in capillary tubes: influence of Korteweg stresses and divergence effects. Phys. Fluids 14 (7), 20522058.
Cox, R. G. 1986a The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.
Cox, R. G. 1986b The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants. J. Fluid Mech. 168, 195220.
Crank, J. 1975 The Mathematics of Diffusion. Clarendon.
Davis, H. T. 1988 A theory of tension at a miscible displacement front. In Numerical Simulation in Oil Recovery (ed. Wheeler, M.). Springer.
Didden, N. & Maxworthy, T. 1982 The viscous spreading of plane and axisymmetric gravity currents. J. Fluid Mech. 121, 2742.
Eddi, A., Winkels, K. G. & Snoeijer, J. H. 2013 Short time dynamics of viscous drop spreading. Phys. Fluids 25 (1), 013102.
Fletcher, C. A. J. 1988 Computational Techniques for Fluid Dynamics. Springer.
Glycerine Producers’ Association 1963 Physical Properties of Glycerine and its Solutions; www.aciscience.org/docs/physical_properties_of_glycerine_and_its_solutions.pdf.
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.
Huppert, H. E. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.
Joanny, J. & Andelman, D. 1987 Steady-state motion of a liquid/liquid/solid contact line. J. Colloid Interface Sci. 119 (2), 451458.
Joseph, D. D. 1990 Fluid dynamics of two miscible liquids with diffusion and gradient stresses. Eur. J. Mech. (B/Fluids) 9 (6), 565596.
Joseph, D. D. & Hu, H. H.1991 Interfacial tension between miscible liquids. Preprint, Department of Aeroengineering, University of Minnesota.
Joseph, D. D., Huang, A. & Hu, H. H. 1996 Non-solenoidal velocity effects and Korteweg stresses in simple mixtures of incompressible liquids. Phys. D 97 (1), 104125.
Joseph, D. D. & Renardy, Y. 2013 Fundamentals of Two-Fluid Dynamics. Springer Science & Business Media.
Kojima, M., Hinch, E. J. & Acrivos, A. 1984 The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids 27 (1), 1932.
Korteweg, D. J. 1901 Sur la forme que prennent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité. Archives Néerlandaises des Sciences exactes et naturelles 6 (1), 124.
Kuang, J., Maxworthy, T. & Petitjeans, P. 2003 Miscible displacements between silicone oils in capillary tubes. Eur. J. Mech. (B/Fluids) 22 (3), 271277.
Kuang, J., Petitjeans, P. & Maxworthy, T. 2004 Velocity fields and streamline patterns of miscible displacements in cylindrical tubes. Exp. Fluids 37 (2), 301308.
Lacaze, L., Guenoun, P., Beysens, D., Delsanti, M., Petitjeans, P. & Kurowski, P. 2010 Transient surface tension in miscible liquids. Phys. Rev. E 82, 041606.
Leal, L. G. 2007 Advanced Transport Phenomena. Cambridge University Press.
Manickam, O. & Homsy, G. M. 1993 Stability of miscible displacements in porous media with nonmonotonic viscosity profiles. Phys. Fluids A 5 (6), 13561367.
Petitjeans, P. & Maxworthy, T. 1996 Miscible displacements in capillary tubes. Part 1. Experiments. J. Fluid Mech. 326, 3756.
Pismen, L. M. & Eggers, J. 2008 Solvability condition for the moving contact line. Phys. Rev. E 78 (5), 056304.
Pojman, J. A., Whitmore, C., Liveri, M. L. T., Lombardo, R., Marszalek, J., Parker, R. & Zoltowski, B. 2006 Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid/water and 1-butanol/water in a spinning-drop tensiometer. Langmuir 22 (6), 25692577.
Pollack, G. L. & Enyeart, J. J. 1985 Atomic test of the Stokes–Einstein law. Part II. Diffusion of Xe through liquid hydrocarbons. Phys. Rev. A 31, 980984.
Rashidnia, N. & Balasubramaniam, R. 2002 Development of an interferometer for measurement of the diffusion coefficient of miscible liquids. Appl. Opt. 41 (7), 13371342.
Rashidnia, N. & Balasubramaniam, R. 2004 Measurement of the mass diffusivity of miscible liquids as a function of concentration using a common path shearing interferometer. Exp. Fluids 36 (4), 619626.
Ray, E., Bunton, P. & Pojman, J. A. 2007 Determination of the diffusion coefficient between corn syrup and distilled water using a digital camera. Am. J. Phys. 75 (10), 903906.
Smith, P. G., Van De Ven, T. G. M. & Mason, S. G. 1981 The transient interfacial tension between two miscible fluids. J. Colloid Interface Sci. 80 (1), 302303.
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12 (9), 14731484.
Truzzolillo, D. & Cipelletti, L. 2017 Off-equilibrium surface tension in miscible fluids. Soft Matt. 13, 1321.
Vanaparthy, S. H. & Meiburg, E. 2008 Variable density and viscosity, miscible displacements in capillary tubes. Eur. J. Mech. (B/Fluids) 27 (3), 268289.
Voinov, O. V. 1976 Hydrodynamics of wetting. Fluid Dyn. 11 (5), 714721.
Walls, D. J., Haward, S. J., Shen, A. Q. & Fuller, G. G. 2016 Spreading of miscible liquids. Phys. Rev. Fluids 1 (1), 013904.
Yang, Z. & Yortsos, Y. C. 1997 Asymptotic solutions of miscible displacements in geometries of large aspect ratio. Phys. Fluids 9 (2), 286298.
Zoltowski, B., Chekanov, Y., Masere, J., Pojman, J. A. & Volpert, V. 2007 Evidence for the existence of an effective interfacial tension between miscible fluids. Part 2. Dodecyl acrylate/poly(dodecyl acrylate) in a spinning drop tensiometer. Langmuir 23 (10), 55225531.
Zwanzig, R. & Harrison, A. K. 1985 Modifications of the Stokes–Einstein formula. J. Chem. Phys. 83 (11), 58615862.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Walls et al. supplementary movie 1
Movie of image sequence shown in Figure 3a. Scale bar is 0.2 mm.

 Video (1.2 MB)
1.2 MB
VIDEO
Movies

Walls et al. supplementary movie 2
Movie from which a frame was taken to create Figure 3b. Scale bar is 0.2 mm.

 Video (476 KB)
476 KB
VIDEO
Movies

Walls et al. supplementary movie 3
Movie of image sequence shown in Figure 7a. Scale bar is 0.2 mm.

 Video (619 KB)
619 KB
VIDEO
Movies

Walls et al. supplementary movie 4
Movie of image sequence shown in Figure 7b. Scale bar is 0.2 mm.

 Video (6.9 MB)
6.9 MB
VIDEO
Movies

Walls et al. supplementary movie 5
Movie of image sequence shown in Figure 7c. Scale bar is 0.2 mm.

 Video (2.8 MB)
2.8 MB
VIDEO
Movies

Walls et al. supplementary movie 6
Movie of a physical pendant drop of 10,000 cSt silicone oil immersed in 1 cSt silicone oil, analogous to the image sequence shown in Figure 7a. Scale bar is 0.1 mm.

 Video (214 KB)
214 KB
VIDEO
Movies

Walls et al. supplementary movie 7
Movie of a simulated pendant drop of 10,000 cSt silicone oil immersed in 1 cSt silicone oil, analogous to the image sequence shown in Figure 7c. Scale bar is 0.1 mm.

 Video (2.9 MB)
2.9 MB
VIDEO
Movies

Walls et al. supplementary movie 8
Movie from which a frame was taken to create Figure 9a. Scale bar is 2.0 mm.

 Video (586 KB)
586 KB
VIDEO
Movies

Walls et al. supplementary movie 9
Movie from which a frame was taken to create Figure 9b. Scale bar is 2.0 mm.

 Video (589 KB)
589 KB
VIDEO
Movies

Walls et al. supplementary movie 10
Movie from which a frame was taken to create Figure 9c. Scale bar is 0.5 mm.

 Video (9.5 MB)
9.5 MB
VIDEO
Movies

Walls et al. supplementary movie 11
Movie from which a frame was taken to create Figure 9d. Scale bar is 25 μm.

 Video (365 KB)
365 KB
VIDEO
Movies

Walls et al. supplementary movie 12
Movie of image sequence shown in Figure 10a. Scale bar is 1.0 mm.

 Video (845 KB)
845 KB
VIDEO
Movies

Walls et al. supplementary movie 13
Movie of an image sequence shown in Figure 10b. Scale bar is 1.0 mm.

 Video (1.5 MB)
1.5 MB

The shape evolution of liquid droplets in miscible environments

  • Daniel J. Walls (a1), Eckart Meiburg (a2) (a3) and Gerald G. Fuller (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed