Skip to main content Accessibility help

Separated rows structure of vortex streets behind triangular objects

  • Ildoo Kim (a1)


We discuss two distinct spatial structures of vortex streets. The ‘conventional mushroom’ structure is commonly discussed in many experimental studies, and the exotic ‘separated rows’ structure is characterized by a thin layer of irrotational fluid between two rows of vortices. In a two-dimensional soap film channel, we generate the exotic vortex arrangement by using triangular objects. This setting allows us to vary the thickness of boundary layers and their separation distance independently. We find that the separated rows structure appears only when the boundary layer is thinner than 40 % of the separation distance. We also discuss two physical mechanisms of the breakdown of vortex structures. The conventional mushroom structure decays due to the mixing, and the separated rows structure decays because its arrangement is hydrodynamically unstable.


Corresponding author

Email address for correspondence:


Hide All
Birkhoff, G. 1953 Formation of vortex streets. J. Appl. Phys. 24, 98103.
Choi, H., Jeon, W. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40 (1), 113139.
Cimbala, J. M., Nagib, H. M. & Roshko, A. 1988 Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265298.
Dynnikova, G. Y., Dynnikov, Y. A. & Guvernyuk, S. V. 2016 Mechanism underlying Kármán vortex street breakdown preceding secondary vortex street formation. Phys. Fluids 28 (5), 054101.
Fey, U., Konig, M. & Eckelmann, H. 1998 A new Strouhal–Reynolds number relationship for the circular cylinder in the range 47. Phys. Fluids 10, 15471549.
Georgiev, D. & Vorobieff, P. 2002 The slowest soap-film tunnel in the southwest. Rev. Sci. Instrum. 73 (3), 11771184.
Goldstein, S. 1938 Modern Development in Fluid Mechanics. Oxford University Press.
Hooker, S. G. 1936 On the action of viscosity in increasing the spacing ratio of a vortex street. Proc. R. Soc. Lond. A 154, 6791.
Inoue, O. & Yamazaki, T. 1999 Secondary vortex streets in two-dimensional cylinder wakes. Fluid Dyn. Res. 25, 118.
von Kármán, T. 1911 Uber den Mechanismus des Widerstandes, den ein bewegter Korper in einer Flussigkeit erfahrt. Gott. Nachr. Math.-Phys. Klasse 509517.
Kim, I. & Mandre, S. 2017 Marangoni elasticity of flowing soap films. Phys. Rev. Fluids 2 (8), 082001(R).
Kim, I. & Wu, X. L. 2015 Unified Strouhal–Reynolds number relationship for laminar vortex streets generated by different-shaped obstacles. Phys. Rev. E 92 (4), 043011.
Kumar, B. & Mittal, S. 2012 On the origin of the secondary vortex street. J. Fluid Mech. 711, 641666.
Martin, B. & Wu, X.-L. 1995 Shear flow in a two-dimensional Couette cell: a technique for measuring the viscosity of free-standing liquid films. Rev. Sci. Instrum. 66, 56035608.
Prasad, V. & Weeks, E. R. 2009 Flow fields in soap films: relating viscosity and film thickness. Phys. Rev. E 80 (2), 026309.
Rivera, M., Vorobieff, P. & Ecke, R. E. 1998 Turbulence in flowing soap films: velocity, vorticity, and thickness fields. Phys. Rev. Lett. 81, 14171420.
Roushan, P. & Wu, X. L. 2005 Structure-based interpretation of the Strouhal–Reynolds number relationship. Phys. Rev. Lett. 94, 054504.
Schlichting, H. 1979 Boundary Layer Theory. McGraw-Hill.
Taneda, S. 1959 Downstream development of the wakes behind cylinders. J. Phys. Soc. Japan 14, 843848.
Vivek, S. & Weeks, E. R. 2015 Measuring and overcoming limits of the Saffman–Delbrück model for soap film viscosities. PLoS ONE 10, e0121981.
Vorobieff, P. & Ecke, R. E. 1999 Cylinder wakes in flowing soap films. Phys. Rev. E 60, 29532956.
Vorobieff, P., Georgiev, D. & Ingber, M. S. 2002 Onset of the second wake: dependence on the Reynolds number. Phys. Fluids 14 (7), L53L56.
Wang, S., Tian, F., Jia, L., Lu, X. & Yin, X. 2010 Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number. Phys. Rev. E 81 (3), 036305.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.
Williamson, C. H. K. & Brown, G. L. 1998 A series in 1/√Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct. 12, 10731085.
Williamson, C. H. K. & Prasad, A. 1993 Wave interactions in the far wake of a body. Phys. Fluids A 5, 18541856.
Wu, X.-L., Martin, B., Kellay, H. & Goldburg, W. I. 1995 Hydrodynamic convection in a two-dimensional Couette cell. Phys. Rev. Lett. 75, 236239.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed