Skip to main content Accessibility help

Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer

  • Gilles Tissot (a1), Mengqi Zhang (a2), Francisco C. Lajús (a1) (a3), André V. G. Cavalieri (a1) and Peter Jordan (a2)...


Linear instability waves, or wavepackets, are key building blocks for the jet-noise problem. It has been shown in previous work that linear models correctly predict the evolution of axisymmetric wavepackets up to the end of the potential core of subsonic turbulent jets. Beyond this station, linear models fail, and nonlinearity is the likely missing piece. The essential underlying nonlinear mechanisms are unknown, and it remains unclear how these should be incorporated in a reduced-order model. The nonlinear interactions are considered in this work as an ‘external’ harmonic forcing added to the standard linear model. This modelling framework is explored using a locally parallel resolvent analysis to determine optimal forcing and associated responses, and a global approach based on 4D-Var data assimilation aimed at finding the optimal forcing of the parabolised stability equations that would minimise errors in the predictions of wavepackets. In all of the problems considered, the critical layer is found to be relevant: it is the position where sensitivity of wavepackets to nonlinearity is greatest. It is seen that disturbances are forced around the critical layer, and tilted by shear as they are advected, in a manner suggestive of an Orr-like mechanism. The ensemble of results suggests that critical-layer effects play a central role in the dynamics of wavepackets in subsonic turbulent jets, and that inclusion of such effects may remedy the shortcomings of linear reduced-order models.


Corresponding author

Email address for correspondence:


Hide All
Adam, J. 1984 The critical layers and other singular regions in ideal hydrodynamics and magnetohydrodynamics. Astrophys. Space Sci. 105 (2), 401412.
Airiau, C., Bottaro, A., Walther, S. & Legendre, D. 2003 A methodology for optimal laminar flow control: application to the damping of Tollmien–Schlichting waves in a boundary layer. Phys. Fluids 15 (5), 11311145.
Alazard, T. 2006 Low Mach number limit of the full Navier–Stokes equations. Arch. Rat. Mech. Anal. 180 (1), 173.
Ansaldi, A. & Airiau, C.2015 Sensitivity analysis for subsonic jet using adjoint of non local stability equations. In 21th AIAA/CEAS Aeroacoustic Conference and Exhibit. 22–26 June, Dallas, Texas, AIAA Paper 2015-2219.
Baqui, Y. B., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.
Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179225.
Brambley, E. J., Darau, M. & Rienstra, S. W. 2012 The critical layer in linear-shear boundary layers over acoustic linings. J. Fluid Mech. 710, 545568.
Breakey, D. E. S., Jordan, P., Cavalieri, A. V. G., Léon, O., Zhang, M., Lehnasch, G., Colonius, T. & Rodriguez, D.2013 Near-field wavepackets and the far-field sound of a subsonic jet. In 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083.
Campos, L. M. B. C., Oliveira, J. M. G. S. & Kobayashi, M. H. 1999 On sound propagation in a linear shear flow. J. Sound Vib. 219 (5), 739770.
Cavalieri, A. V. G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.
Cavalieri, A. V. G., Daviller, G., Comte, P., Jordan, P., Tadmor, G. & Gervais, Y. 2011a Using large eddy simulation to explore sound-source mechanisms in jets. J. Sound Vib. 330 (17), 40984113.
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011b Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18), 44744492.
Cavalieri, A. V. G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.
Cavalieri, A. V. G., Rodriguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.
Cordier, L., El Majd, B. A. & Favier, J. 2010 Calibration of POD reduced-order models using Tikhonov regularization. Intl J. Numer. Meth. Fluids 63 (2), 269296.
Cordier, L., Noack, B. R., Daviller, G., Tissot, G., Lehnasch, G., Delville, J., Balajewicz, M. & Niven, R. 2013 Identification strategies for model-based control. Exp. Fluids 54 (8), 121.
Cowley, S. J. & Wu, X.-S. 1994 Asymptotic approaches to transition modelling. In AGARD, Special Course on Progress in Transition Modelling 38 p (SEE N94-33884 10-34), vol. 1.
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.
Dergham, G., Sipp, D. & Robinet, J.-C. 2013 Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow. J. Fluid Mech. 719, 406430.
Dobrinsky, A.2002 Adjoint analysis for receptivity prediction. PhD thesis, Rice University, Houston, Texas.
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.
Ffowcs-Williams, J. E. & Kempton, A. J. 1978 The noise from the large-scale structure of a jet. J. Fluid Mech. 84 (04), 673694.
Freund, J. B.1997 Compressibility effects in a turbulent annular mixing layer. PhD thesis, Stanford University.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.
Gloor, M., Obrist, D. & Kleiser, L. 2013 Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow. Phys. Fluids 25 (8), 084102.
Gudmundsson, K.2010 Instability wave models of turbulent jets from round and serrated nozzles. PhD thesis, California Institute of Technology, Pasadena, California.
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.
Gunzburger, M. D. 2003 Perspectives in Flow Control and Optimization. SIAM.
Haberman, R. 1976 Nonlinear perturbations of the Orr–Sommerfeld equation – asymptotic expansion of the logarithmic phase shift across the critical layer. SIAM J. Math. Anal. 7 (1), 7081.
Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.
Hansen, P. C. 1992 Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34 (4), 561580.
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245283.
Huerre, P. 1980 The nonlinear stability of a free shear layer in the viscous critical layer regime. Phil. Trans. R. Soc. Lond. A 293 (1408), 643672.
Huerre, P. & Scott, J. F. 1980 Effects of critical layer structure on the nonlinear evolution of waves in free shear layers. Proc. R. Soc. Lond. A 371 (1747), 509524.
Jeun, J., Nichols, J. W. & Jovanović, M. R. 2016 Input–output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.
Jordan, P., Colonius, T., Brès, G. A., Zhang, M., Towne, A. & Lele, S. K. 2014 Modeling intermittent wavepackets and their radiated sound in a turbulent jet. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford University.
Jordan, P. & Gervais, Y. 2008 Subsonic jet aeroacoustics: associating experiment, modelling and simulation. Exp. Fluids 44 (1), 121.
Kerhervé, F., Jordan, P., Cavalieri, A. V. G., Delville, J., Bogey, C. & Juvé, D. 2012 Educing the source mechanism associated with downstream radiation in subsonic jets. J. Fluid Mech. 710, 606640.
Landahl, M. T. 1967 A wave-guide model for turbulent shear flow. J. Fluid Mech. 29, 441459.
Lesshafft, L. 2015 Preface to this Festschrift for Patrick Huerre. Eur. J. Mech. (B/Fluids) 49, 299300.
Lin, C. C. 1954 Some physical aspects of the stability of parallel flows. Proc. Natl Acad. Sci. USA 40 (8), 741747.
Maslowe, S. A. 1986 Critical layers in shear flows. Annu. Rev. Fluid Mech. 18 (1), 405432.
Mckeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
Meseguer, Á. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds number 107 . J. Comput. Phys. 186 (1), 178197.
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.
Moarref, R., Jovanović, M. R., Tropp, J. A., Sharma, A. S. & Mckeon, B. J. 2014 A low-order decomposition of turbulent channel flow via resolvent analysis and convex optimization. Phys. Fluids 26 (5), 051701.
Navon, I. M. 2009 Data assimilation for numerical weather prediction: a review. In Data Assimilation for Atmospheric, Oceanic, and Hydrologic Applications. Springer.
Nichols, J. & Jovanović, M. 2014 Input–ouput analysis of high-speed jet noise. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford University.
Nocedal, J. & Wright, St. J. 1999 Numerical Optimization. Springer.
Papadakis, N.2007 Assimilation de données images: application au suivi de courbes et de champs de vecteurs. PhD thesis, Université de Rennes I.
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.
Pralits, J. O., Airiau, C., Hanifi, A. & Henningson, D. S. 2000 Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust. 65 (3–4), 321346.
Pralits, J. O., Hanifi, A. & Henningson, D. S. 2002 Adjoint-based optimization of steady suction for disturbance control in incompressible flows. J. Fluid Mech. 467, 129161.
Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D 189 (1–2), 115129.
Sasaki, K.2015 Estudo e controle de pacotes de onda em jatos utilizando as equaões de estabilidade parabolizadas. Master thesis, Instituto Technológico de Aeronáutica, São José dos Campos, Brazil.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. vol. 142. Springer.
Semeraro, O., Jaunet, V., Jordan, P., Cavalieri, A. V. G. & Lesshafft, L.2016 Stochastic and harmonic optimal forcing in subsonic jets. In 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-2935.
Sharma, A. S. & Mckeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.
Tissot, G., Zhang, M., Lajús, F. C. Jr., Cavalieri, A. V. G., Jordan, P. & Colonius, T. 2015 Sensitivity of wavepackets in jets to non-linear effects: the role of the critical layer. In 21th AIAA/CEAS Aeroacoustic Conference and Exhibit. 22–26 June, Dallas, Texas, AIAA Paper 2015-2218.
Weideman, J. A. & Reddy, S. C. 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.
Zhang, M., Jordan, P., Lehnasch, G., Cavalieri, A. V. G. & Agarwal, A.2014 Just enough jitter for jet noise? In 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, AIAA Paper 2014-3061.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed