Skip to main content Accessibility help

Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos

  • DIDIER LUCOR (a1), JOHAN MEYERS (a1) (a2) and PIERRE SAGAUT (a1)


We address the sensitivity of large-eddy simulations (LES) to parametric uncertainty in the subgrid-scale model. More specifically, we investigate the sensitivity of the LES statistical moments of decaying homogeneous isotropic turbulence to the uncertainty in the Smagorinsky model free parameter Cs (i.e. the Smagorinsky constant). Our sensitivity methodology relies on the non-intrusive approach of the generalized Polynomial Chaos (gPC) method; the gPC is a spectral non-statistical numerical method well-suited to representing random processes not restricted to Gaussian fields. The analysis is carried out at Reλ, =, 100 and for different grid resolutions and Cs distributions. Numerical predictions are also compared to direct numerical simulation evidence. We have shown that the different turbulent scales of the LES solution respond differently to the variability in Cs. In particular, the study of the relative turbulent kinetic energy distributions for different Cs distributions indicates that small scales are mainly affected by changes in the subgrid-model parametric uncertainty.



Hide All
Askey, R. & Wilson, J. 1985 Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc., AMS, Providence RI, vol. 319
Asokan, B. V. & Zabaras, N. 2005 a Using stochastic analysis to capture unstable equilibrium in natural convection. J. Comput. Phys. 208, 134153.
Asokan, B. V. & Zabaras, N. 2005 b Variational multiscale stabilized fem formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier–Stokes equations. J. Comput. Phys. 205, 94133.
Cameron, R. & Martin, W. 1947 The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385.
Canavan, G. 1970 Some properties of a Lagrangian Wiener-Hermite expansion. J. Fluid Mech. 41, 405412.
Carati, D., Winckelmans, G. S. & Jeanmart, H. 2001 On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid Mech. 441, 119138.
Chorin, A. 1974 Gaussian fields and random flow. J. Fluid Mech. 85, 325347.
Crow, S. & Canavan, G. 1970 Relationship between a wiener-hermite expansion and an energy cascade. J. Fluid Mech. 41, 387403.
Deardoff, J. W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.
Deodatis, G. 1991 Weighted integral method. I: stochastic stiffness matrix. J. Engng Mech. 117 (8), 18511864.
Deodatis, G. & Shinozuka, M. 1991 Weighted integral method. II: response variability and reliability. J. Engng Mech. 117 (8), 18651877.
Fishman, G. 1996 Monte Carlo: Concepts, Algorithms, and Applications. Springer.
Frauenfelder, P., Schwab, C. & Todor, R. 2005 Finite elements for elliptic problems with stochastic coefficients. Comput. Meth. Appl. Mech. Engng 193, 205228.
Frisch, U. 1995 Turbulence. Cambridge University Press.
Fureby, C. & Tabor, G. 1997 Mathematical and physical constraints on large-eddy simulations. Theor. Comput. Fluid Dyn. 9, 85102.
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.
Geurts, B. J. & FrÖhlich, J. 2002 A framework for predicting accuracy limitations in Large Eddy Simulations. Phys. Fluids 14, L41L44.
Ghanem, R. 1999 Ingredients for a general purpose stochastic finite element formulation. Comput. Meth. Appl. Mech. Engng 168, 1934.
Ghanem, R. & Brzakala, W. 1996 Stochastic finite-element analysis of soil layers with random interface. ASCE J. Engng Mech. 122, 361369.
Ghanem, R. & Dham, S. 1998 Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transp. Porous Media 32, 239262.
Ghanem, R. & Hayek, B. 2002 Probabilistic modeling of flow over rough terrain. Trans. ASME: J. Fluids Engng 124, 4250.
Ghanem, R. & Red-Horse, J. 1999 Propagation of uncertainty in complex physical systems using a stochastic finite elements approach. Physica D 133, 137144.
Ghanem, R. & Spanos, P. 1991 Stochastic Finite Elements: a Spectral Approach. Springer.
Ghosal, S. 1996 An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125, 187206.
Ghosal, S. 1999 Mathematical and physical constraints on large-eddy simulation of turbulence. AIAA J. 37, 425433.
Hien, T. & Kleiber, M. 1997 Stochastic finite element modelling in linear transient heat transfer. Comput. Meth. Appl. Mech. Engng 144, 111124.
Hien, T. & Kleiber, M. 1998 On solving nonlinear transient heat transfer problems with random parameters. Comput. Meth. Appl. Mech. Engng 151, 287299.
Hou, T. Y., Luo, W., Rozovskii, B. & Zhou, H.-M. 2006 Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216, 687706.
Hughes, T. J. R., Mazzei, L. & Oberai, A. A. 2001 The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids 13, 505512.
Jiménez, J. 1999 On eddy-viscosity sub-grid models. In Direct and Large-Eddy Simulation III (ed. Voke, P. R., Sandham, N. D. & Kleiser, L.), pp. 75–86.
Jiménez, J. & Moser, R. D. 2000 Large-eddy simulations: where are we and what can we expect? AIAA J. 38, 605612.
Keese, A. 2005 Numerical solution of systems with stochastic uncertainties: a general purpose framework for stochastic finite elements. PhD thesis, Technische Universitat Braunschweig, Mechanik-Zentrum.
Kleiber, M. & Hien, T. 1992 The Stochastic Finite Element Method. John Wiley & Sons.
Knio, O. & Le Maître, O. 2006 Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid Dyn. Res. 38 (9), 616640.
Koekoek, R. & Swarttouw, R. 1998 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Tech. Rep. 98-17. Department of Technical Mathematics and Informatics, Delft University of Technology.
Le Maitre, O. Knio, O., Najm, H. & Ghanem, R. 2001 A stochastic projection method for fluid flow. i. basic formulation. J. Comput. Phys. 173, 481511.
Le Maitre, O., Najm, H., Ghanem, R. & Knio, O. 2004 Multi-resolution analysis of wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502531.
Le Maitre, O., Reagan, M., Najm, H., Ghanem, R. & Knio, O. 2002 A stochastic projection method for fluid flow. ii. random process. J. Comput. Phys. 181, 944.
Li, R. & Ghanem, R. 1998 Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration. Prob. Engng Mech. 13 (2), 125136.
Lilly, D. K. 1966 On the application of the eddy-viscosity concept in the inertial sub-range of turbulence. Tech. Rep. 123. NCAR.
Lilly, D. K. 1967 The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of IBM Scientific Computing Symposium on Environmental Siences. IBM Data Processing Division, White Plains, New York.
Liu, P.-L. & DerKiureghian, A. Kiureghian, A. 1991 Finite element reliability of geometrically nonlinear uncertain structures. J. Engng Mech. 117, 18061825.
Lucor, D. 2004 Generalized Polynomial Chaos: applications to random oscillators and flow-structure interactions. PhD thesis, Brown University.
Lucor, D. & Karniadakis, G. 2004 a Adaptive generalized polynomial chaos for nonlinear random oscillators. SIAM J. Sci. Comput. 26 (2), 720735.
Lucor, D. & Karniadakis, G. 2004 b Noisy Inflows Cause a Shedding-Mode Switching in Flow past an Oscillating Cylinder. Phys. Rev. Lett. 92, 154501–1; 154501–4.
McComb, W. D., Hunter, A. & Johnston, C. 2001 Conditional mode elimination and the subgrid modeling problem for isotropic turbulence. Phys. Fluids 13, 20302044.
McMillan, O. J. & Ferziger, J. H. 1979 Direct testing of subgrid-scale models. AIAA J. 17, 13401346.
Meecham, W. & Jeng, D. 1968 Use of the wiener-hermite expansion for nearly normal turbulence. J. Fluid Mech. 32, 225249.
Meneveau, C. 1994 Statistics of turbulence subgrid-scale stresses: Necessary conditions and experimental tests. Phys. Fluids 6, 815833.
Meneveau, C. & Lund, T. S. 1997 The dynamic Smagorinsky model and scale-dependent coefficients in the viscous range of turbulence. Phys. Fluids 9, 39323934.
Meyers, J., Geurts, B. J. & Baelmans, M. 2003 Database-analysis of errors in large-eddy simulation. Phys. Fluids 15, 27402755.
Meyers, J., Geurts, B. J. & Baelmans, M. 2005 Optimality of the dynamic procedure for large-eddy simulations. Phys. Fluids 17, 045108.
Meyers, J. & Sagaut, P. 2006 On the model coefficients for the standard and the variational multi-scale Smagorinsky model. J. Fluid Mech. 569, 287319.
Meyers, J., Sagaut, P. & Geurts, B. J. 2006 Optimal model parameters for multi-objective large-eddy simulations. Phys. Fluids 18, 095103.
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62, 183200.
Ogura, H. 1972 Orthogonal functionals of the Poisson process. IEEE Trans. Info. Theory IT-18, 473481.
Orszag, S. & Bissonnette, L. 1967 Dynamical properties of truncated Wiener-Hermite expansions. Phys. Fluids 10, 26032613.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Porté-Agel, F., Meneveau, C. & Parlange, M. B. 2000 A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmosoheric boundary layer. J. Fluid Mech. 415, 261284.
Sagaut, P. 2006 Large Eddy Simulations for Incompressible flows, 3rd edn. Springer.
Schoutens, W. 1999 Stochastic processes in the Askey scheme. PhD thesis, K.U. Leuven.
Shinozuka, M. & Deodatis, G. 1988 Response variability of stochastic finite element systems. J. Engng Mech. 114, 499519.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91, 99165.
Spanos, P. & Ghanem, R. 1989 Stochastic finite element expansion for random media. ASCE J. Engng Mech. 115, 10351053.
Tatang, M., Pan, W., Prinn, R. & McRae, G. 1997 An efficient method for parametric uncertainty analysis of numerical geophysical models. J. Geophys. Res. 102, 2192521932.
Vanmarcke, E. & Grigoriu, M. 1983 Stochastic finite element analysis of simple beams. J. Engng Mech. 109, 12031214.
VÖlker, S., Moser, R. D. & Venugopal, P. 2002 Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation data. Phys. Fluids 14, 36753691.
Vreman, A. W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16, 36703681.
Vreman, B., Geurts, B. & Kuerten, H. 1996 Comparison of numerical schemes in large-eddy simulations of the temporal mixing layer. Intl J. Numer. Meth. Fluids 22, 297311.
Vreman, B., Geurts, B. J. & Kuerten, H. 1994 Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278, 351362.
Voke, P. R. 1996 Subgrid-scale modelling at low mesh Reynolds number. Theor. Comput. Fluid Dyn. 8, 131143.
Wan, X. & Karniadakis, G. 2005 An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209, 617642.
Wan, X. & Karniadakis, G. 2006 Stochastic heat transfer enhancement in a grooved channel. J. Fluid Mech. 565, 255278.
Webster, M., Tatang, M. & McRae, G. 1996 Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model. MIT Joint Program on the Science and Policy of Global Change Reports Series 4. MIT.
Wiener, N. 1938 The homogeneous chaos. Am. J. Maths 60, 897936.
Xiu, D. & Karniadakis, G. 2002 The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619644.
Xiu, D. & Karniadakis, G. 2003 a Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187, 137167.
Xiu, D. & Karniadakis, G. 2003 b A new stochastic approach to transient heat conduction modeling with uncertainty. Intl J. Heat Mass Transfer 46, 46814693.
Zhang, D. & Lu, Z. 2004 An efficient, high-order perturbation approach for flow in random porous media via karhunen-loeve and polynomial expansions. J. Comput. Phys. 194, 773794.
Zhu, W., Ren, Y. & Wu, W. 1992 Stochastic FEM based on local average of random vector fields. J. Engng Mech. 118, 496511.
Zh, W. & Wu, W. 1991 A stochastic finite element method for real eigenvalue problems. Prob. Engng Mech. 6, 228232.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed