Skip to main content Accessibility help
×
Home

Self-similar spectra of point-source scalar plumes in a turbulent boundary layer

  • K. M. Talluru (a1), Jimmy Philip (a2) and K. A. Chauhan (a1)

Abstract

Measurements of concentration fluctuations in a passive scalar plume released within a turbulent boundary layer are utilised to ascertain the scaling of concentration spectra. It is observed that the concentration spectra in a narrow meandering plume has a self-similar behaviour in both transverse ( $y$ ) and vertical ( $z$ , i.e. wall-normal) directions. Experimental data reveal self-similarity when the magnitude of concentration spectra is scaled by the local concentration variance whereas frequency is suitably scaled utilising the integral length scale of the streamwise velocity or the boundary layer thickness and the source velocity as length and velocity scales, respectively. Furthermore, our data show that at each frequency, the concentration energy is distributed across the $y$ and $z$ directions that is proportional to concentration variance at that location. These results are consistent with our non-dimensional analysis. Based on these observations, if the mean plume statistics are known, a model is proposed with which concentration spectrum at any position within the plume can be calculated using the spectrum at any another location as the input. The model is tested extensively for point-source plumes released at various heights and streamwise distances in a turbulent boundary layer, and is found to predict spectra at different $y$ and $z$ locations in close agreement with measurements.

Copyright

Corresponding author

Email address for correspondence: murali.talluru@sydney.edu.au

References

Hide All
del Álamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
Baidya, R., Philip, J., Hutchins, N., Monty, J. P. & Marusic, I. 2017 Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Phys. Fluids 29 (2), 020712.
Becker, H. A., Hottel, H. C. & Williams, G. C. 1967 The nozzle-fluid concentration field of the round, turbulent, free jet. J. Fluid Mech. 30 (2), 285303.
Birch, A. D., Brown, D. R., Dodson, M. G. & Thomas, J. R. 1978 The turbulent concentration field of a methane jet. J. Fluid Mech. 88 (3), 431449.
Cassiani, M., Franzese, P. & Giostra, U. 2005 A PDF micromixing model of dispersion for atmospheric flow. Part II. Application to convective boundary layer. Atmos. Environ. 39 (8), 14711479.
Chatwin, P. C. & Sullivan, P. J. 1990 A simple and unifying physical interpretation of scalar fluctuation measurements from many turbulent shear flows. J. Fluid Mech. 212, 533556.
Chauhan, K. A., Nagib, H. M. & Monkewitz, P. A. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404.
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.
Djenidi, L. & Antonia, R. A. 2012 A spectral chart method for estimating the mean turbulent kinetic energy dissipation rate. Exp. Fluids 53 (4), 10051013.
Fackrell, J. E. 1980 A flame ionisation detector for measuring fluctuating concentration. J. Phys. E: Sci. Instrum. 13 (8), 888893.
Fackrell, J. E. & Robins, A. G. 1982a Concentration fluctuations and fluxes in plumes from point sources in a turbulent boundary layer. J. Fluid Mech. 117, 126.
Fackrell, J. E. & Robins, A. G. 1982b The effects of source size on concentration fluctuations in plumes. Boundary-Layer Meteorol. 22 (3), 335350.
Gifford, F. 1959 Statistical properties of a fluctuating plume dispersion model. Adv. Geophys. 6, 117137.
Hanna, S. R. 1986 Spectra of concentration fluctuations: the two time scales of a meandering plume. Atmos. Environ. 20 (6), 11311137.
Hanna, S. R. & Insley, E. M. 1989 Time series analyses of concentration and wind fluctuations. Boundary-Layer Meteorol. 47 (1–4), 131147.
Hinze, J. O. 1975 Turbulence. McGraw-Hill.
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Marro, M., Salizzoni, P., Soulhac, L. & Cassiani, M. 2018 Dispersion of a passive scalar fluctuating plume in a turbulent boundary layer. Part III. Stochastic modelling. Boundary-Layer Meteorol. 167 (3), 349369.
Morrill, W. C., Philip, J. & Klewicki, J. 2017 An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. J. Fluid Mech. 813, 594617.
Mylne, K. R., Davidson, M. J. & Thomson, D. J. 1996 Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Boundary-Layer Meteorol. 79 (3), 225242.
Nironi, C., Salizzoni, P., Marro, M., Mejean, P., Grosjean, N. & Soulhac, L. 2015 Dispersion of a passive scalar fluctuating plume in a turbulent boundary layer. Part I. Velocity and concentration measurements. Boundary-Layer Meteorol. 156 (3), 415446.
Obukhov, A. M. 1949 The local structure of atmospheric turbulence. In Dokl. Akad. Nauk. SSSR, vol. 67, pp. 643646.
Panofsky, H. A. & Dutton, J. A. 1984 Atmospheric Turbulence: Models and Methods for Engineering Applications. John Wiley.
Pitts, W. M. & Kashiwagi, T. 1984 The application of laser-induced Rayleigh light scattering to the study of turbulent mixing. J. Fluid Mech. 141, 391429.
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high reynolds number. J. Fluid Mech. 268, 333372.
Sawford, B. L., Frost, C. C. & Allan, T. C. 1985 Atmospheric boundary-layer measurements of concentration statistics from isolated and multiple sources. Boundary-Layer Meteorol. 31 (3), 249268.
Sawford, B. L. & Sullivan, P. J. 1995 A simple representation of a developing contaminant concentration field. J. Fluid Mech. 289, 141157.
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405 (6787), 639.
Sreenivasan, K. R. 1996 The passive scalar spectrum and the obukhov–corrsin constant. Phys. Fluids 8 (1), 189196.
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.
Talluru, K. M., Hernandez-Silva, C. & Chauhan, K. A. 2019 A robust calibration technique for concentration measurements using ionisation detectors. Meas. Sci. Tech., https://doi.org/10.1088/1361-6501/ab0c5b.
Talluru, K. M., Hernandez-Silva, C., Philip, J. & Chauhan, K. A. 2017a Measurements of scalar released from point sources in a turbulent boundary layer. Meas. Sci. Tech. 28 (5), 055801.
Talluru, K. M., Hernandez-Silva, C., Philip, J. & Chauhan, K. A.2017b Measurements of velocity and concentration in a high Reynolds number turbulent boundary layer. In 10th International Symposium on Turbulence and Shear Flow Phenomena, Chicago, USA, Begel House Inc.
Talluru, K. M., Philip, J. & Chauhan, K. A. 2018 Local transport of passive scalar released from a point source in a turbulent boundary layer. J. Fluid Mech. 846, 292317.
Taylor, G. I. 1922 Diffusion by continuous movements. Proc. Lond. Math. Soc. 2 (1), 196212.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Vanderwel, C. & Tavoularis, S. 2014 Measurements of turbulent diffusion in uniformly sheared flow. J. Fluid Mech. 754, 488514.
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.
Weil, J. C. 2012 Atmospheric dispersion. In Handbook of Environmental Fluid Dynamics, Volume Two: Systems, Pollution Modeling and Measurements (ed. Fernando, H. J.), pp. 163174. CRC Press.
Yee, E., Wang, B. C. & Lien, F. S. 2009 Probabilistic model for concentration fluctuations in compact-source plumes in an urban environment. Boundary-Layer Meteorol. 130 (2), 169208.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Self-similar spectra of point-source scalar plumes in a turbulent boundary layer

  • K. M. Talluru (a1), Jimmy Philip (a2) and K. A. Chauhan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.