Skip to main content Accessibility help

Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion

  • Markus Uhlmann (a1) and Todor Doychev (a1)


Direct numerical simulation of the gravity-induced settling of finite-size particles in triply periodic domains has been performed under dilute conditions. For a single solid-to-fluid-density ratio of 1.5 we have considered two values of the Galileo number corresponding to steady vertical motion ( $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Ga}=121$ ) and to steady oblique motion ( $\mathit{Ga}=178$ ) in the case of one isolated sphere. For the multiparticle system we observe strong particle clustering only in the latter case. The geometry and time scales related to clustering are determined from Voronoï tessellation and particle-conditioned averaging. As a consequence of clustering, the average particle settling velocity is increased by 12 % as compared with the value of an isolated sphere; such a collective effect is not observed in the non-clustering case. By defining a local (instantaneous) fluid velocity average in the vicinity of the finite-size particles it is shown that the observed enhancement of the settling velocity is due to the fact that the downward fluid motion (with respect to the global average) which is induced in the cluster regions is preferentially sampled by the particles. It is further observed that the variance of the particle velocity is strongly enhanced in the clustering case. With the aid of a decomposition of the particle velocity it is shown that this increase is due to enhanced fluid velocity fluctuations (due to clustering) in the vicinity of the particles. Finally, we discuss a possible explanation for the observation of a critical Galileo number marking the onset of clustering under dilute conditions.


Corresponding author

Email address for correspondence:


Hide All
Aliseda, A., Cartellier, A., Hainaux, F. & Lasheras, J. C. 2002 Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468, 77105.
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (11), 34963513.
Beetstra, R., van der Hoef, M. A. & Kuipers, J. A. M. 2007 Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 53 (2), 489501.
Bouchet, G., Mebarek, M. & Dušek, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere in early transitional regimes. Eur. J. Mech. (B/Fluids) 25, 321336.
Cartellier, A., Andreotti, M. & Sechet, P. 2009 Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number. Phys. Rev. E 80, 065301.
Chan-Braun, C., García-Villalba, M. & Uhlmann, M. 2011 Force and torque acting on particles in a transitionally rough open channel flow. J. Fluid Mech. 684, 441474.
Chan-Braun, C., García-Villalba, M. & Uhlmann, M. 2013 Spatial and temporal scales of force and torque acting on wall-mounted spherical particles in open channel flow. Phys. Fluids 25 (7), 075103.
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R3.
Ferenc, J.-S. & Neda, Z. 2007 On the size distribution of Poisson Voronoi cells. Physica A 385, 518526.
Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6 (11), 37423749.
Fortes, A. F., Joseph, D. D. & Lundgren, T. S. 1987 Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177, 467483.
García-Villalba, M., Kidanemariam, A. G. & Uhlmann, M. 2012 DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging. Intl J. Multiphase Flow 46, 5474.
Ghidersa, B. & Dušek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of a sphere. J. Fluid Mech. 423, 3369.
Glowinski, R., Pan, T.-W., Hesla, T. I. & Joseph, D. D. 1999 A distributed Lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow 25, 755794.
Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001 Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243278.
Horowitz, M. & Williamson, C. H. K. 2010 The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251294.
Jenny, M., Dušek, J. & Bouchet, G. 2004 Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508, 201239.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.
Kajishima, T. 2004 Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow 25 (5), 721728.
Kajishima, T. & Takiguchi, S. 2002 Interaction between particle clusters and particle-induced turbulence. Intl J. Heat Fluid Flow 23, 639646.
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.
Kim, I., Elghobashi, S. & Sirignano, W. A. 1993 Three-dimensional flow over two spheres placed side by side. J. Fluid Mech. 246, 465488.
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.
Martinez-Mercado, J., Palacios-Morales, C. A. & Zenit, R. 2007 Measurement of pseudoturbulence intensity in monodispersed bubbly liquids for $10 < \mathit{Re} < 500$ . Phys. Fluids 19 (10), 103302.
Melheim, J. A. 2005 Cluster integration method in Lagrangian particle dynamics. Comput. Phys. Commun. 171 (3), 155161.
Merle, A., Legendre, D. & Magnaudet, J. 2005 Forces on a high-Reynolds-number spherical bubble in a turbulent flow. J. Fluid Mech. 532, 5362.
Mizukami, M., Parthasarathy, R. N. & Faeth, G. M. 1992 Particle-generated turbulence in homogeneous dilute dispersed flows. Intl J. Multiphase Flow 18 (3), 397412.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010a Inertial particles clustering in turbulent flows: a Voronoi analysis. In ICMF 2010 (ed. Balachandar, S. & Sinclair Curtis, J.). The University of Florida, CD-ROM.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010b Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.
Okabe, A., Boots, B., Sugihara, K. & Chiu, S. N. 1992 Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley.
Parthasarathy, R. N. & Faeth, G. M. 1990a Turbulence modulation in homogeneous dilute particle-laden flows. J. Fluid Mech. 220, 485514.
Parthasarathy, R. N. & Faeth, G. M. 1990b Turbulent dispersion of particles in self-generated homogeneous turbulence. J. Fluid Mech. 220, 515537.
Riboux, G., Legendre, D. & Risso, F. 2013 A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719, 362387.
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.
Risso, F. 2011 Theoretical model for $k^{-3}$ spectra in dispersed multiphase flows. Phys. Fluids 23 (1), 011701.
Risso, F. & Ellingsen, K. 2002 Velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.
Risso, F., Roig, V., Amoura, Z., Riboux, G. & Billet, A.-M. 2008 Wake attenuation in large Reynolds number dispersed two-phase flows. Phil. Trans. R. Soc. A 366 (1873), 21772190.
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.
Schouveiler, L., Brydon, A., Leweke, T. & Thompson, M. C. 2004 Interactions of the wakes of two spheres placed side by side. Eur. J. Mech. (B/Fluids) 23 (1), 137145.
Schouveiler, L. & Provensal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys. Fluids 14 (11), 38463854.
Shotorban, B. & Balachandar, S. 2006 Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105.
Sundaram, S. & Collins, L. R. 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.
Tennetti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37, 10721092.
Tsuji, T., Narutomi, R., Yokomine, T., Ebara, S. & Shimizu, A. 2003 Unsteady three-dimensional simulation of interactions between flow and two particles. Intl J. Multiphase Flow 29 (9), 14311450.
Tsuji, Y., Morikawa, Y. & Terashima, K. 1982 Fluid-dynamic interaction between two spheres. Intl J. Multiphase Flow 8 (1), 7182.
Uhlmann, M.2004 New results on the simulation of particulate flows. Technical Report No. 1038, CIEMAT, Madrid, Spain, ISSN 1135-9420.
Uhlmann, M. 2005a An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.
Uhlmann, M. 2005b Proceedings of 11th Workshop Two-Phase Flow Predictions (Merseburg, Germany) (ed. Sommerfeld, M.), An improved fluid–solid coupling method for DNS of particulate flow on a fixed mesh. Universität Halle.
Uhlmann, M. 2006 Experience with DNS of particulate flow using a variant of the immersed boundary method. In Proceedings of ECCOMAS CFD 2006 (Egmond aan Zee, The Netherlands) (ed. Wesseling, P., Oñate, E. & Périaux, J.). TU Delft.
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.
Uhlmann, M. & Dušek, J. 2014 The motion of a single heavy sphere in ambient fluid: a benchmark for interface-resolved particulate flow simulations with significant relative velocities. Intl J. Multiphase Flow 59, 221243.
Veldhuis, C. H. J. & Biesheuvel, A. 2007 An experimental study of the regimes of motion of spheres falling or ascending freely in a newtonian fluid. Intl J. Multiphase Flow 33 (10), 10741087.
Wu, J. & Manasseh, R. 1998 Dynamics of dual-particles settling under gravity. Intl J. Multiphase Flow 24, 13431358.
Wylie, J. J. & Koch, D. L. 2000 Particle clustering due to hydrodynamical interactions. Phys. Fluids 12 (5), 964970.
Yin, X. & Koch, D. L. 2008 Velocity fluctuations and hydrodynamic diffusion in finite-Reynolds-number sedimenting suspensions. Phys. Fluids 20 (4), 043305.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed