Skip to main content Accessibility help

The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow

  • Guoliang Xu (a1), Jianqiang Chen (a1), Gang Liu (a1), Siwei Dong (a1) and Song Fu (a2)...


The secondary instabilities of stationary cross-flow vortices in a Mach 6 swept wing flow are studied using Floquet theory. High-frequency secondary instability modes of ‘y’ mode on top of stationary cross-flow vortices, and ‘z’ mode concentrating on the shoulder of the stationary cross-flow vortex are found. The most unstable secondary instability mode is always the ‘z’ mode as in incompressible swept wing flows. A new secondary instability mode concentrating on the trough of the stationary cross-flow vortex is found. The balance analysis of disturbance kinetic energy shows that the new mode belongs to the class of ‘y’ mode. The growth rate of the new ‘y’ mode located on the trough of the stationary cross-flow vortex is significantly larger than that of the ‘y’ mode on top of the stationary cross-flow vortex, and is comparable with the growth rate of the ‘z’ mode. It is also found that the new ‘y’ mode with higher frequency can evolve into the ‘z’ mode further downstream. The role of the pressure fluctuation term, including the pressure diffusion and pressure dilatation, in the energy production of secondary instability modes, is also investigated. It is shown that the pressure diffusion will only enhance the growth rate of the ‘z’ mode with higher frequency, but has little influence on other types of secondary instability mode. However, the pressure dilatation term arising from non-vanishing velocity divergence will reduce the growth rates of all secondary instability modes.


Corresponding author

Email address for correspondence:


Hide All
Balakumar, P. & King, R. A.2011 Receptivity to roughness, acoustic and vortical disturbances in supersonic boundary layers over swept wings. AIAA Paper 2011-1314.
Balakumar, P. & Owens, L. R.2010 Stability of hypersonic boundary layer on a cone at an angle of attack. AIAA Paper 2010-4718.10.2514/6.2010-4718
Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear stability of the blasius boundary layer. J. Fluid Mech. 242, 441474.10.1017/S0022112092002453
Bippes, H. 1999 Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aero. Sci. 35, 363412.10.1016/S0376-0421(99)00002-0
Borg, M. P., Kimmel, R. L. & Stanfield, S. 2015 Travelling crossflow instability for the HiFiRE-5 elliptic cone. J. Spacecr. Rocket. 52 (3), 664674.10.2514/1.A33145
Chang, C.-L., Malik, M. R., Erlebacher, G. & Hussaini, M. Y.1991 Compressible stability of growing boundary layers using parabolized stability equations. AIAA Paper 91-1636.10.2514/6.1991-1636
Choudhari, M. M., Li, F., Duan, L., Chang, C.-L., Carpenter, M. H., Streett, C. L. & Malik, M. R.2013 Towards bridging the gaps in holistic transition prediction via numerical simulations. AIAA Paper 2013-2718.10.2514/6.2013-2718
Choudhari, M. M., Li, F., Paredes, P. & Duan, L.2017 Computations of crossflow instability in hypersonic boundary layers. AIAA Paper 2017-4300.10.2514/6.2017-4300
Craig, A. S. & Saric, W. S.2015 Experimental study of crossflow instability on a Mach 6 yawed cone. AIAA Paper 2015-2774.10.2514/6.2015-2774
Craig, A. S. & Saric, W. S. 2016 Crossflow instability in a hypersonic boundary layer. J. Fluid Mech. 808, 224244.10.1017/jfm.2016.643
Dinzl, D. J. & Candler, G. V. 2017 Direct simulation of hypersonic crossflow instability on an elliptic cone. AIAA J. 55 (6), 17691782.10.2514/1.J055130
Duan, L., Beekman, I. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.10.1017/S0022112010005902
Gray, W. E. 1952 The nature of the boundary layer flow at the rose of a swept wing. In Royal Aircraft Estabilishment, Rae Tm Aero 256. UK: Farnborough, England.
Herbert, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29, 254283.10.1146/annurev.fluid.29.1.245
King, R. A. 1992 Three-dimensional boundary-layer transition on a cone at Mach 3.5. Exp. Fluids 13 (5), 305314.10.1007/BF00209502
Koch, W., Bertolotti, F. P., Stolte, A. & Hein, S. 2000 Nonlinear equilibrium solutions in a three-dimensional boundary layer and their secondary instability. J. Fluid Mech. 406, 131174.10.1017/S0022112099007387
Kohama, Y., Onodera, T. & Egami, Y. 1996 Design and control of crossflow instability field. In Proceedings IUTAM Symposium On Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, Manchester, UK, pp. 147156.10.1007/978-94-009-1700-2_14
Kohama, Y., Saric, W. S. & Hoos, J. A. 1991 A high frequency secondary instability of crossflow vortices that leads to transition. In Proceedings of the Royal Aeronautical Society Conference on Boundary-Layer Transition and Control, Cambridge. UK.
Li, F. & Choudhari, M. M. 2011 Spatially developing secondary instabilities in compressible swept airfoil boundary layers. Theor. Comput. Fluid Dyn. 25, 6585.10.1007/s00162-010-0190-x
Li, F., Choudhari, M. M., Paredes, P. & Duan, L. 2016 High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer. Phys. Rev. Fluids 1, 053603.10.1103/PhysRevFluids.1.053603
Mack, C. J. & Schmid, P. J. 2011 Global stability of swept flow around a parabolic body: the neutral curve. J. Fluid Mech. 678, 589603.10.1017/jfm.2011.158
Malik, M. R. & Balakumar, P.1992 Instability and transition in three-dimensional supersonic boundary layers. AIAA Paper 1992-5049.10.2514/6.1992-5049
Malik, M. R., Li, F. & Chang, C.-L. 1994 Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability. J. Fluid Mech. 268, 136.10.1017/S0022112094001242
Malik, M. R., Li, F., Choudhari, M. M. & Chang, C.-L. 1999 Secondary instability of crossflow vortices and swept-wing boundary layer transition. J. Fluid Mech. 399, 85115.10.1017/S0022112099006291
Moyes, A. J., Paredes, P., Kocian, T. S. & Reed, H. L.2016 Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone. AIAA Paper 2016-0848.10.2514/6.2016-0848
Moyes, A. J., Paredes, P., Kocian, T. S. & Reed, H. L. 2017 Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone. J. Fluid Mech. 812, 370397.10.1017/jfm.2016.793
Owens, L. R., Beeler, G. B., Balakumar, P. & McGuire, P. J.2014 Flow disturbance and surface roughness effects on crossflow boundary-layer transition in supersonic flows. AIAA Paper 2014-2638.10.2514/6.2014-2638
Poll, D. I. A. 1985 Some observations of the transition process on the windward face of a long yawed cylinders. J. Fluid Mech. 150, 329356.10.1017/S0022112085000155
Pruett, C. D. & Streett, C. L. 1991 A spectral collocation method for compressible, non-similar boundary layers. Intl J. Numer. Meth. Fluids 13 (6), 713737.10.1002/fld.1650130605
Ren, J. & Fu, S. 2015 Secondary instabilities of Görtler vortices in high-speed boundary layer flow. J. Fluid Mech. 781, 388421.10.1017/jfm.2015.490
Saric, W. S., Reed, H. L. & White, E. B. 2003 Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech. 35, 413440.10.1146/annurev.fluid.35.101101.161045
Schuele, C. Y., Corke, T. C. & Matlis, E. 2013 Control of stationary crossflow modes in a Mach 3.5 boundary layer using patterned passive and active roughness. J. Fluid Mech. 718, 538.10.1017/jfm.2012.579
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G.1984 Laminar boundary layer stability experiments on a cone at Mach 8, part 2: Blunt cone. AIAA Paper 84-0006.
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.10.1017/S0022112096007525
Ward, C. A. C., Henderson, R. O. & Schneider, S. P.2015 Possible secondary instability of stationary crossflow vortices on an inclined cone at Mach 6. AIAA Paper 2015-2773.10.2514/6.2015-2773
Wassermann, P. & Kloker, M. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.10.1017/S0022112001007418
White, E. B. & Saric, W. S. 2005 Secondary instability of crossflow vortices. J. Fluid Mech. 525, 275308.10.1017/S002211200400268X
Xu, G. L., Jiang, X. & Liu, G. 2016 Delayed detached eddy simulations of fighter aircraft at high angle of attack. Acta Mechanica Sin. 32 (4), 588603.10.1007/s10409-016-0565-3
Xu, G. L., Liu, G., Chen, J. Q. & Fu, S. 2018a Role of freestream slow acoustic waves in a hypersonic three-dimensional boundary layer flow. AIAA J. 56 (9), 35703584.10.2514/1.J056492
Xu, G. L., Liu, G., Jiang, X. & Qian, W. Q. 2018b Effect of pitch down motion on the vortex reformation over fighter aircraft. Aerosp. Sci. Technol. 73, 278288.10.1016/j.ast.2017.12.006
Xu, G. L., Xiao, Z. X. & Fu, S. 2011 Analysis of the secondary instability of the incompressible flows over a swept wing. Sci. China G 54 (4), 724736.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed