Skip to main content Accessibility help
×
×
Home

Sculpting with flow

  • Leif Ristroph (a1)

Abstract

Flowing air and water are persistent sculptors, gradually working stone, clay, sand and ice into landforms and landscapes. The evolution of shape results from a complex fluid–solid coupling that tends to produce stereotyped forms, and this morphology offers important clues to the history of a landscape and its development. Claudin et al. (J. Fluid Mech., vol. 832, 2017, R2) shed light on how we might read the rippled and scalloped patterns written into dissolving or melting solid surfaces by a flowing fluid. By better understanding the genesis of these patterns, we may explain why they appear in different natural settings, such as the walls of mineral caves dissolving in flowing water, ice caves in wind, and melting icebergs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sculpting with flow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sculpting with flow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sculpting with flow
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: lr1090@nyu.edu

Footnotes

Hide All

Figure by the title: Reproduced with permission from Alex Noriega.

Footnotes

References

Hide All
Blumberg, P. N. & Curl, R. L. 1974 Experimental and theoretical studies of dissolution roughness. J. Fluid Mech. 65 (4), 735751.
Claudin, P., Durán, O. & Andreotti, B. 2017 Dissolution instability and roughening transition. J. Fluid Mech. 832, R2.
Feldman, S. 1959 On the instability theory of the melted surface of an ablating body when entering the atmosphere. J. Fluid Mech. 6 (1), 131155.
Huang, J. M., Moore, M. N. J. & Ristroph, L. 2015 Shape dynamics and scaling laws for a body dissolving in fluid flow. J. Fluid Mech. 765, R3.
Meakin, P. & Jamtveit, B. 2009 Geological pattern formation by growth and dissolution in aqueous systems. Proc. R. Soc. Lond. A 466 (2115), 659694.
Mitchell, W. H. & Spagnolie, S. E. 2017 A generalized traction integral equation for Stokes flow, with applications to near-wall particle mobility and viscous erosion. J. Comput. Phys. 333, 462482.
Moore, M. N. J. 2017 Riemann–Hilbert problems for the shapes formed by bodies dissolving, melting, and eroding in fluid flows. Commun. Pure Appl. Maths 70, 18101831.
Ristroph, L., Moore, M. N. J., Childress, S., Shelley, M. J. & Zhang, J. 2012 Sculpting of an erodible body by flowing water. Proc. Natl Acad. Sci. USA 109 (48), 1960619609.
Short, M. B., Baygents, J. C., Beck, J. W., Stone, D. A., Toomey, R. S. III & Goldstein, R. E. 2005 Stalactite growth as a free-boundary problem: a geometric law and its platonic ideal. Phys. Rev. Lett. 94 (1), 018501.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed