Skip to main content Accessibility help
×
Home

Scaling of second- and higher-order structure functions in turbulent boundary layers

  • C. M. de Silva (a1), I. Marusic (a1), J. D. Woodcock (a1) and C. Meneveau (a2)

Abstract

The statistical properties of wall turbulence in the logarithmic region are investigated using structure functions of the streamwise velocity. To this end, datasets that span several orders of magnitude of Reynolds numbers are used, up to $Re_{{\it\tau}}=O(10^{6})$ , providing uniquely large scale separations for scrutinising previously proposed scaling laws. For the second-order structure functions strong support is found simultaneously for power-law scalings in the Kolmogorov inertial subrange and for logarithmic scaling at larger scales within the inertial range ( $z<r\ll {\it\delta}$ , where $z$ is the distance from the wall, $r$ the scale, and ${\it\delta}$ the boundary layer thickness). The observed scalings are shown to agree between the datasets, which include both temporal and spatial velocity signals and span from laboratory to atmospheric flows, showing a degree of universality in the results presented. An examination of higher even-order structure functions also shows support for logarithmic scaling behaviour for $z<r\ll {\it\delta}$ , provided that the Reynolds number is sufficiently high. These findings are interpreted by generalising the work of Meneveau & Marusic (J. Fluid Mech., vol. 719, 2013) and introducing bridging relations between higher-order moments of velocity fluctuations and structure functions. Further, a physical model based on the attached-eddy hypothesis is utilised to derive various properties of the structure functions for the energy-containing scales of the logarithmic region. The descriptions derived from the model are shown to be supported by the experimental data.

Copyright

Corresponding author

Email address for correspondence: desilvac@unimelb.edu.au

References

Hide All
Anselmet, F., Gagne, Yl., Hopfinger, E. J. & Antonia, R. A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140 (63), 6389.
Arad, I., Biferale, L., Mazzitelli, I. & Procaccia, I. 1999 Disentangling scaling properties in anisotropic and inhomogeneous turbulence. Phys. Rev. Lett. 82 (25), 50405043.
Atkinson, C., Buchmann, N. A., Amili, O. & Soria, J. 2013 Appropriate spatial filtering of 2D and 3D PIV measurements of wall-bounded turbulent flows. In PIV 13; 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands, July 1–3, 2013, Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, and Faculty of Aerospace Engineering.
Atkinson, C., Buchmann, N. A. & Soria, J. 2014 An experimental investigation of turbulent convection velocities in a turbulent boundary layer. Flow Turbul. Combust. 94, 117.
Benzi, R., Amati, G., Casciola, C. M., Toschi, F. & Piva, R. 1999 Intermittency and scaling laws for wall bounded turbulence. Phys. Fluids 11 (6), 12841286.
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to $Re_{{\it\tau}}\approx 4000$ . J. Fluid Mech. 742, 171191.
Casciola, C. M., Gualtieri, P., Benzi, R. & Piva, R. 2003 Scale-by-scale budget and similarity laws for shear turbulence. J. Fluid Mech. 476, 105114.
Casciola, C. M., Gualtieri, P., Jacob, B. & Piva, R. 2005 Scaling properties in the production range of shear dominated flows. Phys. Rev. Lett. 95 (2), 024503.
Chauhan, K. A., Monkewitz, P. A. & Nagib, H. M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.
Chin, C., Philip, J., Klewicki, J., Ooi, A. & Marusic, I. 2014 Reynolds-number-dependent turbulent inertia and onset of log region in pipe flows. J. Fluid Mech. 757, 747769.
Chung, D. & McKeon, B. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.
Coles, D.1962 The turbulent boundary layer in a compressible fluid, Tech. Rep. R-403-PR. The RAND Corporation.
Davidson, P. A. & Krogstad, P. Å. 2009 A simple model for the streamwise fluctuations in the log-law region of a boundary layer. Phys. Fluids 21 (5), 055105.
Davidson, P. A. & Krogstad, P. Å. 2014 A universal scaling for low-order structure functions in the log-law region of smooth- and rough-wall boundary layers. J. Fluid Mech. 752, 140156.
Davidson, P. A., Krogstad, P. A. & Nickels, T. B. 2006a A refined interpretation of the logarithmic structure function law in wall layer turbulence. Phys. Fluids 18 (6).
Davidson, P. A., Nickels, T. B. & Krogstad, P.-Å. 2006b The logarithmic structure function law in wall-layer turbulence. J. Fluid Mech. 550, 5160.
Del Alamo, J. C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.
Dennis, D. J. C. & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech. 614, 197206.
Frisch, U. 1995 Turbulence: the Legacy of AN Kolmogorov. Cambridge University Press.
Gualtieri, P., Casciola, C. M., Benzi, R., Amati, G. & Piva, R. 2002 Scaling laws and intermittency in homogeneous shear flow. Phys. Fluids 14 (2), 583596.
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.
Högström, U., Hunt, J. C. R. & Smedman, A.-S. 2002 Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol. 103, 101124.
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_{{\it\tau}}=2003$ . Phys. Fluids 18, 011702.
Hultmark, M. 2012 A theory for the streamwise turbulent fluctuations in high Reynolds number pipe flow. J. Fluid Mech. 707, 575584.
Hutchins, N., Nickels, T. B., Marusic, I. & Chong, M. S. 2009 Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103136.
Jacob, B., Biferale, L., Iuso, G. & Casciola, C. M. 2004 Anisotropic fluctuations in turbulent shear flows. Phys. Fluids 16 (11), 41354142.
Jiménez, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44, 2745.
Klewicki, J., Fife, P. & Wei, T. 2009 On the logarithmic mean profile. J. Fluid Mech. 638, 7393.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Kolmogorov, A. N. 1941 Finite size corrections to scaling in high Reynolds number turbulence. C. R. Acad. Sci. URSS 30, 301305.
Kunkel, G. J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high Reynolds number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.
Kurien, S., Lvov, V. S., Procaccia, I. & Sreenivasan, K. R. 2000 Scaling structure of the velocity statistics in atmospheric boundary layers. Phys. Rev. E 61 (1), 407.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_{{\it\tau}}=5200$ . J. Fluid Mech. (under review), http://arxiv.org/abs/1410.7809.
Marusic, I. 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13, 735.
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.
McKeon, B. J. & Morrison, J. F. 2007 Asymptotic scaling in turbulent pipe flow. Phil. Trans. R. Soc. Lond. A 365 (1852), 771787.
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1R11.
Meneveau, C. & Sreenivasan, K. R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59 (13), 1424.
Morrison, J. F., McKeon, B. J., Jiang, W. & Smits, A. J. 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.
Nelkin, M. 1990 Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42 (12), 72267229.
Nickels, T. B., Marusic, I., Hafez, S. & Chong, M. S. 2005 Evidence of the $k_{1}^{-1}$ law in a high Reynolds number turbulent boundary layer. Phy. Rev. Lett. 95 (7), 074501.
Perry, A. E. & Chong, M. S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119 (173), 106121.
Perry, A. E., Henbest, S. M. & Chong, M. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.
Perry, A. E. & Li, J. Ds. 1990 Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 218, 405438.
Perry, A. E. & Marusic, I. 1995 A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361388.
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25, 021704.
Poggi, D., Porporato, A. & Ridolfi, L. 2003 Analysis of the small-scale structure of turbulence on smooth and rough walls. Phys. Fluids 15 (1), 3546.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Saikrishnan, N., De Angelis, E., Longmire, E. K., Marusic, I., Casciola, C. M. & Piva, R. 2012 Reynolds number effects on scale energy balance in wall turbulence. Phys. Fluids 24 (1), 015101.
Schultz, M. P. & Flack, K. A. 2005 Outer layer similarity in fully rough turbulent boundary layers. Exp. Fluids 38 (3), 328340.
She, Z. S. & Leveque, E. 1994 Universal scaling law in fully developed turbulence. Phys. Rev. Lett. 72, 1424.
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to ${\it\delta}^{+}=2000$ . Phys. Fluids 25 (10), 105102.
de Silva, C. M., Gnanamanickam, E. P., Atkinson, C., Buchmann, N. A., Hutchins, N., Soria, J. & Marusic, I. 2014 High spatial range velocity measurements in a high Reynolds number turbulent boundary layer. Phys. Fluids 26 (2), 025117.
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.
Stevens, R., Wilczek, M. & Meneveau, C. 2014 Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. J. Fluid Mech. 757, 888907.
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.
Toschi, F., Amati, G., Succi, S., Benzi, R. & Piva, R. 1999 Intermittency and structure functions in channel flow turbulence. Phys. Rev. Lett. 82 (25), 50445047.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Woodcock, J. D. & Marusic, I. 2015 The statistical behaviour of attached eddies. Phys. Fluids 27 (1), 015104.
Zhao, R. & Smits, A. J. 2007 Scaling of the wall-normal turbulence component in high Reynolds number pipe flow. J. Fluid Mech. 576, 457473.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Scaling of second- and higher-order structure functions in turbulent boundary layers

  • C. M. de Silva (a1), I. Marusic (a1), J. D. Woodcock (a1) and C. Meneveau (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.