Skip to main content Accessibility help
×
Home

Scale invariance in finite Reynolds number homogeneous isotropic turbulence

  • L. Djenidi (a1), R. A. Antonia (a1) and S. L. Tang (a2)

Abstract

The problem of homogeneous isotropic turbulence (HIT) is revisited within the analytical framework of the Navier–Stokes equations, with a view to assessing rigorously the consequences of the scale invariance (an exact property of the Navier–Stokes equations) for any Reynolds number. The analytical development, which is independent of the 1941 (K41) and 1962 (K62) theories of Kolmogorov for HIT for infinitely large Reynolds number, is applied to the transport equations for the second- and third-order moments of the longitudinal velocity increment, $(\unicode[STIX]{x1D6FF}u)$ . Once the normalised equations and the constraints required for complying with the scale-invariance property of the equations are presented, results derived from these equations and constraints are discussed and compared with measurements. It is found that the fluid viscosity, $\unicode[STIX]{x1D708}$ , and the mean kinetic energy dissipation rate, $\overline{\unicode[STIX]{x1D716}}$ (the overbar denotes spatial and/or temporal averaging), are the only scaling parameters that make the equations scale-invariant. The analysis further leads to expressions for the distributions of the skewness and the flatness factor of $(\unicode[STIX]{x1D6FF}u)$ and shows that these distributions must exhibit plateaus (of different magnitudes) in the dissipative and inertial ranges, as the Taylor microscale Reynolds number $Re_{\unicode[STIX]{x1D706}}$ increases indefinitely. Also, the skewness and flatness factor of the longitudinal velocity derivative become constant as $Re_{\unicode[STIX]{x1D706}}$ increases; this is supported by experimental data. Further, the analysis, backed up by experimental evidence, shows that, beyond the dissipative range, the behaviour of $\overline{(\unicode[STIX]{x1D6FF}u)^{n}}$ with $n=2$ , 3 and 4 cannot be represented by a power law of the form $r^{\unicode[STIX]{x1D701}_{n}}$ when the Reynolds number is finite. It is shown that only when $Re_{\unicode[STIX]{x1D706}}\rightarrow \infty$ can an $n$ -thirds law (i.e. $\overline{(\unicode[STIX]{x1D6FF}u)^{n}}\sim r^{\unicode[STIX]{x1D701}_{n}}$ , with $\unicode[STIX]{x1D701}_{n}=n/3$ ) emerge, which is consistent with the onset of a scaling range.

Copyright

Corresponding author

Email address for correspondence: shunlin.tang88@gmail.com

References

Hide All
Antonia, R. A., Anselmet, F. & Chambers, A. J. 1986 Assessment of local isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365391.
Antonia, R. A. & Burattini, P. 2006 Approach to the 4/5 law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.
Antonia, R. A., Djenidi, L. & Danaila, L. 2014 Collapse of the turbulent dissipation range on Kolmogorov scales. Phys. Fluids 26, 045105.
Antonia, R. A., Djenidi, L., Danaila, L. & Tang, S. L. 2017 Small scale turbulence and the finite Reynolds number effect. Phys. Fluids 29 (2), 020715.
Antonia, R. A., Tang, S. L., Djenidi, L. & Danaila, L. 2015 Boundedness of the velocity derivative skewness in various turbulent flows. J. Fluid Mech. 781, 727744.
Antonia, R. A., Zhou, T. & Romano, G. P. 2002 Small-scale turbulence characteristics of two-dimensional bluff body wakes. J. Fluid Mech. 459, 6792.
Barenblatt, G. I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics, vol. 14. Cambridge University Press.
Batchelor, G. K. 1947 Kolmogoroff’s theory of locally isotropic turbulence. Math. Proc. Camb. Phil. Soc. 43, 533559.
Batchelor, G. K. & Townsend, A. A. 1947 Decay of vorticity in isotropic turbulence. Proc. R. Soc. Lond. Ser. A 190, 534550.
de Bruyn Kops, S. M. 2015 Classical scaling and intermittency in strongly stratified Boussinesq turbulence. J. Fluid Mech. 775, 436463.
Burattini, P., Antonia, R. A. & Danaila, L. 2005 Similarity in the far field of a turbulent round jet. Phys. Fluids 17, 025101.
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A. 1999 A generalization of Yaglom’s equation which accounts for the large-scale forcing in heated decaying turbulence. J. Fluid Mech. 391, 359372.
Davidson, P. 2015 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.
Djenidi, L. & Antonia, R. A. 2015 A general self-preservation analysis for decaying homogeneous isotropic turbulence. J. Fluid Mech. 773, 345365.
Djenidi, L., Antonia, R. A. & Danaila, L. 2017a Self-preservation relation to the Kolmogorov similarity hypotheses. Phys. Rev. Fluids 2 (5), 054606.
Djenidi, L., Antonia, R. A., Lefeuvre, N. & Lemay, J. 2015 Complete self-preservation on the axis of a turbulent round jet. J. Fluid Mech. 790, 5770.
Djenidi, L., Danaila, L., Antonia, R. A. & Tang, S. 2017b A note on the velocity derivative flatness factor in decaying hit. Phys. Fluids 29 (5), 051702.
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.
Gagne, Y., Castaing, B., Baudet, C. & Malecot, Y. 2004 Reynolds dependence of third-order velocity structure functions. Phys. Fluids 16 (2), 482485.
Gamard, S. & George, W. K. 2000 Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul. Combust. 63 (1–4), 443477.
Gotoh, T. & Nakano, T. 2003 Role of pressure in turbulence. J. Stat. Phys. 113 (5), 855874.
Henriksen, R. N. 2015 Scale Invariance: Self-Similarity of the Physical World. Wiley.
Hill, R. J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.
Hill, R. J. & Boratav, O. N. 2001 Next-order structure-function equations. Phys. Fluids 13, 276283.
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.
Kármán, T. V. & Howarth, L. 1938 On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192215.
Kolmogorov, A. N. 1941a The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR 30, (see also Proc. R. Soc. Lond. A (1991), 434, 9–13).
Kolmogorov, A. N. 1941b Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, (see also Proc. R. Soc. Lond. A (1991), 434, 15–17).
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics: Vol 6 of Course of Theoretical Physics, 2nd edn. Pergamon Press.
Lundgren, T. S. 2002 Kolmogorov two-thirds law by matched asymptotic expansion. Phys. Fluids 14 (2), 638642.
Meldi, M., Djenidi, L. & Antonia, R. 2018 Reynolds number effect on the velocity derivative flatness factor. J. Fluid Mech. 856, 426443.
Novikov, E. A 1965 Functionals and the random-force method in turbulence theory. Sov. Phys. JETP 20 (5), 12901294.
Oberlack, M. 1997 Invariant modeling in large-eddy simulation of turbulence. In Annu. Res. Briefs, pp. 322. Center for Turbulence Research, Stanford University.
Oboukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13 (1), 7781.
Saffman, P. G. 1968 Lectures on homogeneous turbulence. In Top. Nonlinear Phys. (ed. Zabusky, N.), pp. 485614. Springer.
Sreenivasan, K. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.
Tang, S. L., Antonia, R. A., Djenidi, L., Abe, H., Zhou., T., Danaila, L. & Zhou, Y. 2015a Transport equation for the meant turbulent energy dissipation rate on the centreline of a fully developed channel flow. J. Fluid Mech. 777, 151177.
Tang, S. L., Antonia, R. A., Djenidi, L., Danaila, L. & Zhou, Y. 2017 Finite Reynolds number effect on the scaling range behavior of turbulent longitudinal velocity structure functions. J. Fluid Mech. 820, 341369.
Tang, S. L., Antonia, R. A., Djenidi, L. & Zhou, Y. 2015b Complete self-preservation along the axis of a circular cylinder far wake. J. Fluid Mech. 786, 253274.
Tang, S. L., Antonia, R. A., Djenidi, L. & Zhou, Y. 2015c Transport equation for the meant turbulent energy dissipation rate in the far-wake of a circular cylinder. J. Fluid Mech. 784, 109129.
Tang, S. L., Antonia, R. A., Djenidi, L. & Zhou, Y. 2018 Reappraisal of the velocity derivative flatness factor in various turbulent flows. J. Fluid Mech. 847, 244265.
Tchoufag, J., Sagaut, P. & Cambon, C. 2012 Spectral approach to finite Reynolds number effects on Kolmogorovs 4/5 law in isotropic turbulence. Phys. Fluids 24 (1), 015107.
Tennekes, I. & Lumley, J. 1975 A First Course in Turbulence. MIT Press, Cambridge, MA.
Thiesset, F., Antonia, R. A. & Djenidi, L. 2014 Consequences of self-preservation on the axis of a turbulent round jet. J. Fluid Mech. 748, R2.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Tsinober, A. 2009 An Informal Conceptual Introduction to Turbulence, vol. 483. Springer.
Xu, G., Antonia, R. A. & Rajagopalan, S. 2001 Sweeping decorrelation hypothesis in a turbulent round jet. Fluid Dyn. Res. 28 (5), 311321.
Yaglom, A. M. 1994 A. N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research. Annu. Rev. Fluid Mech. 26 (1), 123.
Yakhot, V. 2001 Mean-field approximation and a small parameter in turbulence theory. Phys. Rev. E 63 (2), 026307.
Zhou, T. & Antonia, R. A. 2000 Reynolds number dependence of the small-scale structure of grid turbulence. J. Fluid Mech. 406, 81107.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Scale invariance in finite Reynolds number homogeneous isotropic turbulence

  • L. Djenidi (a1), R. A. Antonia (a1) and S. L. Tang (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.