Skip to main content Accessibility help

Saturation of a turbulent mixing layer over a cavity: response to harmonic forcing around mean flows

  • E. Boujo (a1), M. Bauerheim (a1) and N. Noiray (a1)


Turbulent mixing layers over cavities can couple with acoustic waves and lead to undesired oscillations. To understand the nonlinear aspects of this phenomenon, a turbulent mixing layer over a deep cavity is considered and its response to harmonic forcing is analysed with large-eddy simulations (LES) and linearised Navier–Stokes equations (LNSE). The Reynolds number is $Re=150\,000$ . As a model of incoming acoustic perturbations, spatially uniform time-harmonic velocity forcing is applied at the cavity end, with amplitudes spanning the wide range 0.045–8.9 % of the main channel bulk velocity. Compressible LES provide reference nonlinear responses of the shear layer, and the associated mean flows. Linear responses are calculated with the incompressible LNSE around the LES mean flows; they predict well the amplification (both measured with kinetic energy and with a proxy for vortex sound production in the mixing layer) and capture the nonlinear saturation observed as the forcing amplitude increases and the mixing layer thickens. Perhaps surprisingly, LNSE calculations based on a monochromatic (single-frequency) assumption yield a good agreement even though higher harmonics and their nonlinear interaction (Reynolds stresses) are not negligible. However, it is found that the leading Reynolds stresses do not force the mixing layer efficiently, as shown by a comparison with the optimal volume forcing obtained from a resolvent analysis. Therefore they cannot fully benefit from the potential for amplification available in the flow. Finally, the sensitivity of the optimal harmonic forcing at the cavity end is computed with an adjoint method. The sensitivities to mean flow modification and to a localised feedback (structural sensitivity) both identify the upstream cavity corner as the region where a small-amplitude modification has the strongest effect. This can guide in a systematic way the design of strategies aiming at controlling the amplification and saturation mechanisms.


Corresponding author

Email addresses for correspondence:,


Hide All
Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J. Fluid Mech. 579, 305314.
del Álamo, J. C. & Jiménez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.
Alvarez, J. O., Kerschen, E. J. & Tumin, A. 2004 A theoretical model for cavity acoustic resonances in subsonic flow. In 10th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 150.
Barkley, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750756.
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.
Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293302.
Boujo, E., Ehrenstein, U. & Gallaire, F. 2013 Open-loop control of noise amplification in a separated boundary layer flow. Phys. Fluids 25 (12), 124106.
Boujo, E. & Gallaire, F. 2015 Sensitivity and open-loop control of stochastic response in a noise amplifier flow: the backward-facing step. J. Fluid Mech. 762, 361392.
Brandt, L., Sipp, D., Pralits, J. O. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.
Cain, A. B., Bower, W. W., McCotter, F. & Romer, W. W.1996 Modeling and prediction of weapons bay acoustic amplitude and frequency. Tech. Rep. VEDA Inc.
Chomaz, J. M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.
Dergham, G., Sipp, D. & Robinet, J.-Ch. 2013 Stochastic dynamics and model reduction of amplifier flows: the backward facing step flow. J. Fluid Mech. 719, 406430.
Edstrand, A. M., Davis, T. B., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2016 On the mechanism of trailing vortex wandering. J. Fluid Mech. 801, R1.
Fani, A., Camarri, S. & Salvetti, M. V. 2012 Stability analysis and control of the flow in a symmetric channel with a sudden expansion. Phys. Fluids 24 (8), 084102.
Farrell, B. F. & Ioannou, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5 (11), 26002609.
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.
Giannetti, F. & Luchini, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167197.
Gikadi, J., Föller, S. & Sattelmayer, T. 2014 Impact of turbulence on the prediction of linear aeroacoustic interactions: acoustic response of a turbulent shear layer. J. Sound Vib. 333, 65486559.
Graf, H. R. & Ziada, S. 2010 Excitation source of a side-branch shear layer. J. Sound Vib. 329, 28252842.
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.
Hecht, F. 2012 New development in FreeFem++. J. Numer. Maths 20 (3–4), 251265.
Hill, D. C.1992 A theoretical approach for analyzing the restabilization of wakes. AIAA Paper 92-0067.
Howe, M. S. 1980 The dissipation of sound at an edge. J. Sound Vib. 70 (3), 407411.
Hwang, Y. & Cossu, C. 2010 Amplification of coherent streaks in the turbulent Couette flow: an input–output analysis at low Reynolds number. J. Fluid Mech. 643, 333348.
Iungo, G. V., Viola, F., Camarri, S., Porté-Agel, F. & Gallaire, F. 2013 Linear stability analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech. 737, 499526.
Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2010 Development of a nonlinear eddy-viscosity closure for the triple-decomposition stability analysis of a turbulent channel. J. Fluid Mech. 664, 74107.
Kooijman, G., Golliard, J. & Hirschberg, A. 2004 Orifice impedance under grazing flow measured with a single microphone method. In 10th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46 (1), 493517.
Magri, L. & Juniper, M. P. 2013 Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach. J. Fluid Mech. 719, 183202.
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.
Mantič-Lugo, V. & Gallaire, F. 2016 Self-consistent model for the saturation mechanism of the response to harmonic forcing in the backward-facing step flow. J. Fluid Mech. 793, 777797.
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.
Marquillie, M., Ehrenstein, U. & Laval, J.-P. 2011 Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech. 681, 205240.
McKeon, B. J., Sharma, A. S. & Jacobi, I. 2013 Experimental manipulation of wall turbulence: a systems approach. Phys. Fluids 25 (3), 031301.
Meliga, P. 2017 Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description. J. Fluid Mech. 826, 503521.
Meliga, P., Pujals, G. & Serre, E. 2012 Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability. Phys. Fluids 24 (6), 061701.
Meliga, P., Sipp, D. & Chomaz, J.-M. 2010 Open-loop control of compressible afterbody flows using adjoint methods. Phys. Fluids 22 (5), 054109.
Mettot, C., Sipp, D. & Bézard, H. 2014 Quasi-laminar stability and sensitivity analyses for turbulent flows: prediction of low-frequency unsteadiness and passive control. Phys. Fluids 26 (4).
Morris, S. C. 2011 Shear-layer instabilities: particle image velocimetry measurements and implications for acoustics. Annu. Rev. Fluid Mech. 43 (1), 529550.
Nakiboğlu, G., Manders, H. B. M. & Hirschberg, A. 2012 Aeroacoustic power generated by a compact axysymmetric cavity: prediction of self-sustained oscillation and influence of the depth. J. Fluid Mech. 703, 163191.
Oberleithner, K., Paschereit, C. O. & Wygnanski, I. 2014 On the impact of swirl on the growth of coherent structures. J. Fluid Mech. 741, 156199.
Oberleithner, K., Schimek, S. & Paschereit, C. O. 2015 Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response: a linear stability analysis. Combust. Flame 162 (1), 8699.
Piot, E., Casalis, G., Muller, F. & Bailly, C. 2006 Investigation of the PSE approach for subsonic and supersonic hot jets. Detailed comparisons with LES and linearized Euler equations results. Intl J. Aeroacoust. 5 (4), 361393.
Poinsot, T., Yip, B., Veynante, D., Trouvé, A., Samaniego, J. M. & Candel, S. 1992 Active control: an investigation method for combustion instabilities. J. Phys. III 2 (7), 13311357.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S. 2009 A note on optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.
Qadri, U. A. & Schmid, P. J. 2017 Frequency selection mechanisms in the flow of a laminar boundary layer over a shallow cavity. Phys. Rev. Fluids 2, 013902.
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.
Rockwell, D. 1983 Oscillations of impinging shear layers. AIAA J. 21 (5), 645664.
Rockwell, D. & Naudascher, E. 1978 Review – self-sustaining oscillations of flow past cavities. J. Fluids Engng 100 (2), 152165.
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11 (1), 6794.
Rossiter, J. E.1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Aeronautical Research Council Reports and Memoranda.
Rowley, C. W. & Williams, D. R. 2006 Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251276.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Tam, C. K. W. & Block, P. J. W. 1978 On the tones and pressure oscillations induced by flow over rectangular cavities. J. Fluid Mech. 89 (2), 373399.
Tammisola, O. & Juniper, M. P. 2016 Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.
Tonon, D., Hirschberg, A., Golliard, J. & Ziada, S. 2011 Aeroacoustics of pipe systems with closed branches. Intl J. Aeroacoust. 10 (2–3), 201275.
Turton, S. E., Tuckerman, L. S. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91, 043009.
Viola, F., Iungo, G. V., Camarri, S., Porté-Agel, F. & Gallaire, F. 2014 Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data. J. Fluid Mech. 750, R1.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed