Skip to main content Accessibility help

Rotational stabilisation of the Rayleigh–Taylor instability at the inner surface of an imploding liquid shell

  • Justin Huneault (a1), David Plant (a2) and Andrew J. Higgins (a1)


A number of applications utilise the energy focussing potential of imploding shells to dynamically compress matter or magnetic fields, including magnetised target fusion schemes in which a plasma is compressed by the collapse of a liquid metal surface. This paper examines the effect of fluid rotation on the Rayleigh–Taylor (RT) driven growth of perturbations at the inner surface of an imploding cylindrical liquid shell which compresses a gas-filled cavity. The shell was formed by rotating water such that it was in solid body rotation prior to the piston-driven implosion, which was propelled by a modest external gas pressure. The fast rise in pressure in the gas-filled cavity at the point of maximum convergence results in an RT unstable configuration where the cavity surface accelerates in the direction of the density gradient at the gas–liquid interface. The experimental arrangement allowed for visualisation of the cavity surface during the implosion using high-speed videography, while offering the possibility to provide geometrically similar implosions over a wide range of initial angular velocities such that the effect of rotation on the interface stability could be quantified. A model developed for the growth of perturbations on the inner surface of a rotating shell indicated that the RT instability may be suppressed by rotating the liquid shell at a sufficient angular velocity so that the net surface acceleration remains opposite to the interface density gradient throughout the implosion. Rotational stabilisation of high-mode-number perturbation growth was examined by collapsing nominally smooth cavities and demonstrating the suppression of small spray-like perturbations that otherwise appear on RT unstable cavity surfaces. Experiments observing the evolution of low-mode-number perturbations, prescribed using a mode-6 obstacle plate, showed that the RT-driven growth was suppressed by rotation, while geometric growth remained present along with significant nonlinear distortion of the perturbations near final convergence.


Corresponding author

Email address for correspondence:


Hide All
Alikhanov, S. G., Belan, V. G., Ivanchenko, A. I., Karasjuk, V. N. & Kichigin, G. N. 1968 The production of pulsed megagauss fields by compression of the metallic cylinder in Z-pinch configuration. J. Sci. Instrum. 1 (5), 543.10.1088/0022-3735/1/5/310
Avital, E. J., Suponitsky, V., Khalzov, I. H., Zimmermann, J. & Plant, D. 2019 On the hydrodynamic stability of an imploding rotating circular cylindrical liquid liner. Phys. Fluids (submitted).
Baldwin, K. A., Scase, M. M. & Hill, R. J. A. 2015 The inhibition of the Rayleigh–Taylor instability by rotation. Sci. Rep. 5, 11706.10.1038/srep11706
Barcilon, A., Book, D. L. & Cooper, A. L. 1974 Hydrodynamic stability of a rotating liner. Phys. Fluids 17 (9), 17071718.10.1063/1.1694960
Bell, G. I.1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321, Los Alamos Scientific Laboratory.
Betti, R., Goncharov, V. N., McCrory, R. L. & Verdon, C. P. 1998 Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas 5 (5), 14461454.10.1063/1.872802
Book, D. L. & Bernstein, I. B. 1979 Soluble model for the analysis of stability in an imploding compressible liner. Phys. Fluids 22 (1), 7988.10.1063/1.862437
Book, D. L. & Turchi, P. J. 1979 Dynamics of rotationally stabilized implosions of compressible cylindrical liquid shells. Phys. Fluids 22 (1), 6878.10.1063/1.862436
Book, D. L. & Winsor, N. K. 1974 Rotational stabilization of a metallic liner. Phys. Fluids 17 (3), 662663.10.1063/1.1694772
Buyko, A. M., Garanin, S. F., Mokhov, V. N. & Yakubov, V. B. 1997 Possibility of low-dense magnetized DT plasma ignition threshold achievement in a MAGO system. Laser Part. Beams 15 (1), 127132.10.1017/S0263034600010818
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cnare, E. C. 1966 Magnetic flux compression by magnetically imploded metallic foils. J. Appl. Phys. 37 (10), 38123816.10.1063/1.1707931
Epstein, R. 2004 On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys. Plasmas 11 (11), 51145124.10.1063/1.1790496
Fowler, C. M., Garn, W. B. & Caird, R. S. 1960 Production of very high magnetic fields by implosion. J. Appl. Phys. 31 (3), 588594.10.1063/1.1735633
Gol’berg, S. M. & Velikovich, A. L. 1993 Suppression of Rayleigh–Taylor instability by the snowplow mechanism. Phys. Fluids B 5 (4), 11641172.10.1063/1.860974
Goncharov, V. N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88, 134502.10.1103/PhysRevLett.88.134502
Haan, S. W. 1989 Onset of nonlinear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A 39, 58125825.10.1103/PhysRevA.39.5812
Harris, E. G. 1962 Rayleigh–Taylor instabilities of a collapsing cylindrical shell in a magnetic field. Phys. Fluids 5 (9), 10571062.10.1063/1.1724473
Hsing, W. W., Barnes, C. W., Beck, J. B., Hoffman, N. M., Galmiche, D., Richard, A., Edwards, J., Graham, P., Rothman, S. & Thomas, B. 1997 Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas 4 (5), 18321840.10.1063/1.872326
Huang, Y. M. & Hassam, A. B. 2001 Velocity shear stabilization of centrifugally confined plasma. Phys. Rev. Lett. 87, 235002.10.1103/PhysRevLett.87.235002
Kirkpatrick, R. C., Lindemuth, I. R. & Ward, I. R. 1995 Magnetized target fusion: an overview. Fusion Technol. 27 (3), 201214.10.13182/FST95-A30382
Kull, H. J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197325.10.1016/0370-1573(91)90153-D
Laberge, M. 2008 An acoustically driven magnetized target fusion reactor. J. Fusion Energy 27 (1), 6568.10.1007/s10894-007-9091-4
Mikaelian, K. O. 1990 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A 42, 34003420.10.1103/PhysRevA.42.3400
Mikaelian, K. O. 2005 Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids 17 (9), 094105.10.1063/1.2046712
Mikaelian, K. O. 2010 Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E 81, 016325.10.1103/PhysRevE.81.016325
Mjolsness, R. C. & Ruppel, H. M. 1986 Stability of an accelerated shear layer. Phys. Fluids 29 (7), 22022209.10.1063/1.865558
Plesset, M. S. 1954 On the stability of fluid flows with spherical symmetry. J. Appl. Phys. 25 (1), 9698.10.1063/1.1721529
Rayleigh, L. 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.
Reid, R. R., Romero-Talamás, C. A., Young, W. C., Ellis, R. F. & Hassam, A. B. 2014 100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission. Phys. Plasmas 21 (6), 063305.10.1063/1.4883499
Robson, A. E. 1982 The linus concept. In Unconventional Approaches to Fusion (ed. Brunelli, B. & Leotta, G. G.), pp. 257279. Springer.10.1007/978-1-4613-3470-5_13
Ruden, E. L. 2002 Rayleigh–Taylor instability with a sheared flow boundary layer. IEEE Trans. Plasma Sci. 30 (2), 611615.10.1109/TPS.2002.1024296
Ryutov, D. D., Derzon, M. S. & Matzen, M. K. 2000 The physics of fast Z pinches. Rev. Mod. Phys. 72, 167223.10.1103/RevModPhys.72.167
Scase, M. M., Baldwin, K. A. & Hill, R. J. A. 2017 Rotating Rayleigh–Taylor instability. Phys. Rev. Fluids 2, 024801.10.1103/PhysRevFluids.2.024801
Scase, M. M. & Hill, R. J. A. 2018 Centrifugally forced Rayleigh–Taylor instability. J. Fluid Mech. 852, 543577.10.1017/jfm.2018.539
Shumlak, U., Golingo, R. P., Nelson, B. A. & Den Hartog, D. J. 2001 Evidence of stabilization in the Z -pinch. Phys. Rev. Lett. 87, 205005.10.1103/PhysRevLett.87.205005
Shumlak, U. & Hartman, C. W. 1995 Sheared flow stabilization of the m = 1 kink mode in Z pinches. Phys. Rev. Lett. 75, 32853288.10.1103/PhysRevLett.75.3285
Shumlak, U. & Roderick, N. F. 1998 Mitigation of the Rayleigh–Taylor instability by sheared axial flows. Phys. Plasmas 5 (6), 23842389.10.1063/1.872913
Somon, J. P. 1969 The dynamical instabilities of cylindrical shells. J. Fluid Mech. 38 (4), 769791.10.1017/S002211206900259X
Suponitsky, V., Froese, A. & Barsky, S. 2014 Richtmyer–Meshkov instability of a liquid–gas interface driven by a cylindrical imploding pressure wave. Comput. Fluids 89, 119.10.1016/j.compfluid.2013.10.031
Sweeney, M. A. & Perry, F. C. 1981 Investigation of shell stability in imploding cylindrical targets. J. Appl. Phys. 52 (7), 44874502.10.1063/1.329376
Tao, J. J., He, X. T., Ye, W. H. & Busse, F. H. 2013 Nonlinear Rayleigh–Taylor instability of rotating inviscid fluids. Phys. Rev. E 87, 013001.10.1103/PhysRevE.87.013001
Taylor, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201 (1065), 192196.
Teodorescu, C., Ellis, R. F., Case, A., Cothran, C., Hassam, A., Lunsford, R. & Messer, S. 2005 Experimental verification of the dielectric constant of a magnetized rotating plasma. Phys. Plasmas 12 (6), 062106.10.1063/1.1924391
Turchi, P. J. 2008 Imploding liner compression of plasma: concepts and issues. IEEE Trans. Plasma Sci. 36 (1), 5261.10.1109/TPS.2007.914173
Turchi, P. J., Cooper, A. L., Ford, R. & Jenkins, D. J. 1976 Rotational stabilization of an imploding liquid cylinder. Phys. Rev. Lett. 36, 15461549.10.1103/PhysRevLett.36.1546
Turchi, P. J., Cooper, A. L., Ford, R. D., Jenkins, D. J. & Burton, R. L. 1980 Review of the NRL liner implosion program. In Megagauss Physics and Technology (ed. Turchi, P. J.), pp. 375386. Springer.10.1007/978-1-4684-1048-8_32
Velikovich, A. L., Cochran, F. L. & Davis, J. 1996 Suppression of Rayleigh–Taylor instability in Z -pinch loads with tailored density profiles. Phys. Rev. Lett. 77, 853856.10.1103/PhysRevLett.77.853
Velikovich, A. L. & Schmit, P. F. 2015 Bell–Plesset effects in Rayleigh–Taylor instability of finite-thickness spherical and cylindrical shells. Phys. Plasmas 22 (12), 122711.10.1063/1.4938272
Wang, L. F., Wu, J. F., Guo, H. Y., Ye, W. H., Liu, J., Zhang, W. Y. & He, X. T. 2015 Weakly nonlinear Bell–Plesset effects for a uniformly converging cylinder. Phys. Plasmas 22 (8), 082702.
Weir, S. T., Chandler, E. A. & Goodwin, B. T. 1998 Rayleigh–Taylor instability experiments examining feedthrough growth in an incompressible, convergent geometry. Phys. Rev. Lett. 80, 37633766.10.1103/PhysRevLett.80.3763
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Huneault et al. supplementary movie 1
Off-axis view of the shell inner surface for unperturbed cavity experiments at initial angular velocities of 79, 105, and 131 rad/s. The shell inner surface only comes into view at a radius of approximately 40 mm to focus on the final stages of collapse near turnaround.

 Video (7.8 MB)
7.8 MB

Huneault et al. supplementary movie 2
Normal view of the unperturbed cavity experiments at initial angular velocities of 79, 105, and 131 rad/s. The dark edge which delineates the cavity surface is notably broadened in the 79 and 105 rad/s experiments due to perturbation growth.

 Video (4.0 MB)
4.0 MB

Huneault et al. supplementary movie 3
Normal view of mode-6 perturbed implosion experiments showing the entire implosion at initial angular velocities of 79, 105, and 131 rad/s. The obstruction plate fins can be seen on the periphery.

 Video (6.8 MB)
6.8 MB

Huneault et al. supplementary movie 4
Normal view of mode-6 perturbed implosion experiments at initial angular velocities of 79, 105, and 131 rad/s, zoomed-in to focus on perturbation growth near turnaround.

 Video (7.0 MB)
7.0 MB

Huneault et al. supplementary movie 5
Off-axis view of the shell inner surface for mode-6 perturbed implosion experiments at initial angular velocities of 79, 105, and 131 rad/s. The shell inner surface only comes into view at a radius of approximately 40 mm to focus on the final stages of collapse near turnaround.

 Video (6.8 MB)
6.8 MB

Huneault et al. supplementary movie 6
Normal view of a mode-24 perturbed implosion experiment at an initial angular velocity of 131 rad/s.

 Video (4.5 MB)
4.5 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed