Alikhanov, S. G., Belan, V. G., Ivanchenko, A. I., Karasjuk, V. N. & Kichigin, G. N.
1968
The production of pulsed megagauss fields by compression of the metallic cylinder in Z-pinch configuration. J. Sci. Instrum.
1 (5), 543.10.1088/0022-3735/1/5/310
Avital, E. J., Suponitsky, V., Khalzov, I. H., Zimmermann, J. & Plant, D.
2019
On the hydrodynamic stability of an imploding rotating circular cylindrical liquid liner. Phys. Fluids (submitted).
Baldwin, K. A., Scase, M. M. & Hill, R. J. A.
2015
The inhibition of the Rayleigh–Taylor instability by rotation. Sci. Rep.
5, 11706.10.1038/srep11706
Barcilon, A., Book, D. L. & Cooper, A. L.
1974
Hydrodynamic stability of a rotating liner. Phys. Fluids
17 (9), 1707–1718.10.1063/1.1694960
Bell, G. I.1951 Taylor instability on cylinders and spheres in the small amplitude approximation. Tech. Rep. LA-1321, Los Alamos Scientific Laboratory.
Betti, R., Goncharov, V. N., McCrory, R. L. & Verdon, C. P.
1998
Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas
5 (5), 1446–1454.10.1063/1.872802
Book, D. L. & Bernstein, I. B.
1979
Soluble model for the analysis of stability in an imploding compressible liner. Phys. Fluids
22 (1), 79–88.10.1063/1.862437
Book, D. L. & Turchi, P. J.
1979
Dynamics of rotationally stabilized implosions of compressible cylindrical liquid shells. Phys. Fluids
22 (1), 68–78.10.1063/1.862436
Book, D. L. & Winsor, N. K.
1974
Rotational stabilization of a metallic liner. Phys. Fluids
17 (3), 662–663.10.1063/1.1694772
Buyko, A. M., Garanin, S. F., Mokhov, V. N. & Yakubov, V. B.
1997
Possibility of low-dense magnetized DT plasma ignition threshold achievement in a MAGO system. Laser Part. Beams
15 (1), 127–132.10.1017/S0263034600010818
Chandrasekhar, S.
1961
Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cnare, E. C.
1966
Magnetic flux compression by magnetically imploded metallic foils. J. Appl. Phys.
37 (10), 3812–3816.10.1063/1.1707931
Epstein, R.
2004
On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys. Plasmas
11 (11), 5114–5124.10.1063/1.1790496
Fowler, C. M., Garn, W. B. & Caird, R. S.
1960
Production of very high magnetic fields by implosion. J. Appl. Phys.
31 (3), 588–594.10.1063/1.1735633
Gol’berg, S. M. & Velikovich, A. L.
1993
Suppression of Rayleigh–Taylor instability by the snowplow mechanism. Phys. Fluids B
5 (4), 1164–1172.10.1063/1.860974
Goncharov, V. N.
2002
Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett.
88, 134502.10.1103/PhysRevLett.88.134502
Haan, S. W.
1989
Onset of nonlinear saturation for Rayleigh–Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A
39, 5812–5825.10.1103/PhysRevA.39.5812
Harris, E. G.
1962
Rayleigh–Taylor instabilities of a collapsing cylindrical shell in a magnetic field. Phys. Fluids
5 (9), 1057–1062.10.1063/1.1724473
Hsing, W. W., Barnes, C. W., Beck, J. B., Hoffman, N. M., Galmiche, D., Richard, A., Edwards, J., Graham, P., Rothman, S. & Thomas, B.
1997
Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas
4 (5), 1832–1840.10.1063/1.872326
Huang, Y. M. & Hassam, A. B.
2001
Velocity shear stabilization of centrifugally confined plasma. Phys. Rev. Lett.
87, 235002.10.1103/PhysRevLett.87.235002
Kirkpatrick, R. C., Lindemuth, I. R. & Ward, I. R.
1995
Magnetized target fusion: an overview. Fusion Technol.
27 (3), 201–214.10.13182/FST95-A30382
Kull, H. J.
1991
Theory of the Rayleigh–Taylor instability. Phys. Rep.
206 (5), 197–325.10.1016/0370-1573(91)90153-D
Laberge, M.
2008
An acoustically driven magnetized target fusion reactor. J. Fusion Energy
27 (1), 65–68.10.1007/s10894-007-9091-4
Mikaelian, K. O.
1990
Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified spherical shells. Phys. Rev. A
42, 3400–3420.10.1103/PhysRevA.42.3400
Mikaelian, K. O.
2005
Rayleigh–Taylor and Richtmyer–Meshkov instabilities and mixing in stratified cylindrical shells. Phys. Fluids
17 (9), 094105.10.1063/1.2046712
Mikaelian, K. O.
2010
Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Phys. Rev. E
81, 016325.10.1103/PhysRevE.81.016325
Mjolsness, R. C. & Ruppel, H. M.
1986
Stability of an accelerated shear layer. Phys. Fluids
29 (7), 2202–2209.10.1063/1.865558
Plesset, M. S.
1954
On the stability of fluid flows with spherical symmetry. J. Appl. Phys.
25 (1), 96–98.10.1063/1.1721529
Rayleigh, L.
1883
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc.
14, 170–177.
Reid, R. R., Romero-Talamás, C. A., Young, W. C., Ellis, R. F. & Hassam, A. B.
2014
100 eV electron temperatures in the Maryland centrifugal experiment observed using electron Bernstein emission. Phys. Plasmas
21 (6), 063305.10.1063/1.4883499
Robson, A. E.
1982
The linus concept. In Unconventional Approaches to Fusion (ed. Brunelli, B. & Leotta, G. G.), pp. 257–279. Springer.10.1007/978-1-4613-3470-5_13
Ruden, E. L.
2002
Rayleigh–Taylor instability with a sheared flow boundary layer. IEEE Trans. Plasma Sci.
30 (2), 611–615.10.1109/TPS.2002.1024296
Ryutov, D. D., Derzon, M. S. & Matzen, M. K.
2000
The physics of fast Z pinches. Rev. Mod. Phys.
72, 167–223.10.1103/RevModPhys.72.167
Scase, M. M., Baldwin, K. A. & Hill, R. J. A.
2017
Rotating Rayleigh–Taylor instability. Phys. Rev. Fluids
2, 024801.10.1103/PhysRevFluids.2.024801
Scase, M. M. & Hill, R. J. A.
2018
Centrifugally forced Rayleigh–Taylor instability. J. Fluid Mech.
852, 543–577.10.1017/jfm.2018.539
Shumlak, U., Golingo, R. P., Nelson, B. A. & Den Hartog, D. J.
2001
Evidence of stabilization in the Z -pinch. Phys. Rev. Lett.
87, 205005.10.1103/PhysRevLett.87.205005
Shumlak, U. & Hartman, C. W.
1995
Sheared flow stabilization of the m = 1 kink mode in Z pinches. Phys. Rev. Lett.
75, 3285–3288.10.1103/PhysRevLett.75.3285
Shumlak, U. & Roderick, N. F.
1998
Mitigation of the Rayleigh–Taylor instability by sheared axial flows. Phys. Plasmas
5 (6), 2384–2389.10.1063/1.872913
Somon, J. P.
1969
The dynamical instabilities of cylindrical shells. J. Fluid Mech.
38 (4), 769–791.10.1017/S002211206900259X
Suponitsky, V., Froese, A. & Barsky, S.
2014
Richtmyer–Meshkov instability of a liquid–gas interface driven by a cylindrical imploding pressure wave. Comput. Fluids
89, 1–19.10.1016/j.compfluid.2013.10.031
Sweeney, M. A. & Perry, F. C.
1981
Investigation of shell stability in imploding cylindrical targets. J. Appl. Phys.
52 (7), 4487–4502.10.1063/1.329376
Tao, J. J., He, X. T., Ye, W. H. & Busse, F. H.
2013
Nonlinear Rayleigh–Taylor instability of rotating inviscid fluids. Phys. Rev. E
87, 013001.10.1103/PhysRevE.87.013001
Taylor, G. I.
1950
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A
201 (1065), 192–196.
Teodorescu, C., Ellis, R. F., Case, A., Cothran, C., Hassam, A., Lunsford, R. & Messer, S.
2005
Experimental verification of the dielectric constant of a magnetized rotating plasma. Phys. Plasmas
12 (6), 062106.10.1063/1.1924391
Turchi, P. J.
2008
Imploding liner compression of plasma: concepts and issues. IEEE Trans. Plasma Sci.
36 (1), 52–61.10.1109/TPS.2007.914173
Turchi, P. J., Cooper, A. L., Ford, R. & Jenkins, D. J.
1976
Rotational stabilization of an imploding liquid cylinder. Phys. Rev. Lett.
36, 1546–1549.10.1103/PhysRevLett.36.1546
Turchi, P. J., Cooper, A. L., Ford, R. D., Jenkins, D. J. & Burton, R. L.
1980
Review of the NRL liner implosion program. In Megagauss Physics and Technology (ed. Turchi, P. J.), pp. 375–386. Springer.10.1007/978-1-4684-1048-8_32
Velikovich, A. L., Cochran, F. L. & Davis, J.
1996
Suppression of Rayleigh–Taylor instability in Z -pinch loads with tailored density profiles. Phys. Rev. Lett.
77, 853–856.10.1103/PhysRevLett.77.853
Velikovich, A. L. & Schmit, P. F.
2015
Bell–Plesset effects in Rayleigh–Taylor instability of finite-thickness spherical and cylindrical shells. Phys. Plasmas
22 (12), 122711.10.1063/1.4938272
Wang, L. F., Wu, J. F., Guo, H. Y., Ye, W. H., Liu, J., Zhang, W. Y. & He, X. T.
2015
Weakly nonlinear Bell–Plesset effects for a uniformly converging cylinder. Phys. Plasmas
22 (8), 082702.
Weir, S. T., Chandler, E. A. & Goodwin, B. T.
1998
Rayleigh–Taylor instability experiments examining feedthrough growth in an incompressible, convergent geometry. Phys. Rev. Lett.
80, 3763–3766.10.1103/PhysRevLett.80.3763