Skip to main content Accessibility help
×
Home

Rotation of a low-Reynolds-number watermill: theory and simulations

  • Lailai Zhu (a1) (a2) and Howard A. Stone (a1)

Abstract

Recent experiments have demonstrated that small-scale rotary devices installed in a microfluidic channel can be driven passively by the underlying flow alone without resorting to conventionally applied magnetic or electric fields. In this work, we conduct a theoretical and numerical study on such a flow-driven ‘watermill’ at low Reynolds number, focusing on its hydrodynamic features. We model the watermill by a collection of equally spaced rigid rods. Based on the classical resistive force (RF) theory and direct numerical simulations, we compute the watermill’s instantaneous rotational velocity as a function of its rod number $N$ , position and orientation. When $N\geqslant 4$ , the RF theory predicts that the watermill’s rotational velocity is independent of $N$ and its orientation, implying the full rotational symmetry (of infinite order), even though the geometrical configuration exhibits a lower-fold rotational symmetry; the numerical solutions including hydrodynamic interactions show a weak dependence on $N$ and the orientation. In addition, we adopt a dynamical system approach to identify the equilibrium positions of the watermill and analyse their stability. We further compare the theoretically and numerically derived rotational velocities, which agree with each other in general, while considerable discrepancy arises in certain configurations owing to the hydrodynamic interactions neglected by the RF theory. We confirm this conclusion by employing the RF-based asymptotic framework incorporating hydrodynamic interactions for a simpler watermill consisting of two or three rods and we show that accounting for hydrodynamic interactions can significantly enhance the accuracy of the theoretical predictions.

Copyright

Corresponding author

Email address for correspondence: hastone@princeton.edu

References

Hide All
Agarwal, A. K., Sridharamurthy, S. S., Beebe, D. J. & Jiang, H. 2005 Programmable autonomous micromixers and micropumps. J. Microelectromech. Syst. 14 (6), 14091421.
Ahn, C. H. & Allen, M. G. 1995 Fluid micropumps based on rotary magnetic actuators. In Micro Electro Mechanical Systems, 1995, MEMS’95, Proceedings, p. 408. IEEE.
Attia, R.2008 Modifications de surfaces et intégration de MEMS pour les laboratoires sur puce. PhD thesis, Université Pierre et Marie Curie-Paris VI.
Attia, R., Pregibon, D. C., Doyle, P. S., Viovy, J.-L. & Bartolo, D. 2009 Soft microflow sensors. Lab on a Chip 9 (9), 12131218.
Bart, S. F., Mehregany, M., Tavrow, L. S., Lang, J. H. & Senturia, S. D. 1992 Electric micromotor dynamics. IEEE Trans. Electron Dev. 39 (3), 566575.
Barta, E. & Liron, N. 1988 Slender body interactions for low Reynolds numbers – Part I: body–wall interactions. SIAM J. Appl. Maths 48 (5), 9921008.
van den Beld, W. T. E., Cadena, N. L., Bomer, J., de Weerd, E. L., Abelmann, L., van den Berg, A. & Eijkel, J. C. T. 2015 Bidirectional microfluidic pumping using an array of magnetic Janus microspheres rotating around magnetic disks. Lab on a Chip 15 (13), 28722878.
Day, R. F. & Stone, H. A. 2000 Lubrication analysis and boundary integral simulations of a viscous micropump. J. Fluid Mech. 416, 197216.
Döpper, J., Clemens, M., Ehrfeld, W., Jung, S., Kaemper, K. P. & Lehr, H. 1997 Micro gear pumps for dosing of viscous fluids. J. Micromech. Microengng 7 (3), 230232.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.
Johnson, R. E. & Brokaw, C. J. 1979 Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. Biophys. J. 25 (1), 113127.
Katz, D. F. 1974 On the propulsion of micro-organisms near solid boundaries. J. Fluid Mech. 64 (1), 3349.
Lighthill, M. J. 1975 Mathematical Biofluiddynamics. SIAM.
Man, Y., Koens, L. & Lauga, E. 2016 Hydrodynamic interactions between nearby slender filaments. Europhys. Lett. 116 (2), 24002.
Mestre, N. J. De 1973 Low-Reynolds-number fall of slender cylinders near boundaries. J. Fluid Mech. 58 (4), 641656.
Moon, B. U., Tsai, S. S. H. & Hwang, D. K. 2015 Rotary polymer micromachines: in situ fabrication of microgear components in microchannels. Microfluid. Nanofluid. 19 (1), 6774.
Nazockdast, E., Rahimian, A., Zorin, D. & Shelley, M. 2017 A fast platform for simulating semi-flexible fiber suspensions applied to cell mechanics. J. Comput. Phys. 329, 173209.
Pak, O. S., Zhu, L., Brandt, L. & Lauga, E. 2012 Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids 24 (10), 103102.
Ross, R. F. & Klingenberg, D. J. 1997 Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 106 (7), 29492960.
Russel, W. B., Hinch, E. J., Leal, L. G. & Tieffenbruck, G. 1977 Rods falling near a vertical wall. J. Fluid Mech. 83 (2), 273287.
Ryu, K. S., Shaikh, K., Goluch, E., Fan, Z. & Liu, C. 2004 Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab on a Chip 4 (6), 608613.
Saintillan, D. & Shelley, M. J. 2007 Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99 (5), 058102.
Sen, M., Wajerski, D. & Gad-el-Hak, M. 1996 A novel pump for MEMS applications. Trans. ASME J. Fluids Engng 118 (3), 624627.
Strogatz, S. H. 2014 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press.
Whitesides, G. M. 2006 The origins and the future of microfluidics. Nature 442 (7101), 368373.
Yamamoto, S. & Matsuoka, T. 1995 Dynamic simulation of fiber suspensions in shear flow. J. Chem. Phys. 102 (5), 22542260.
Zaki, T. G., Sen, M. & Gad-el-Hak, M. 1994 Numerical and experimental investigation of flow past a freely rotatable square cylinder. J. Fluids Struct. 8 (7), 555582.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed