Skip to main content Accessibility help
×
Home

Role of Darrieus–Landau instability in propagation of expanding turbulent flames

  • Sheng Yang (a1), Abhishek Saha (a1), Zirui Liu (a1) and Chung K. Law (a1) (a2)

Abstract

In this paper we study the essential role of Darrieus–Landau (DL), hydrodynamic, cellular flame-front instability in the propagation of expanding turbulent flames. First, we analyse and compare the characteristic time scales of flame wrinkling under the simultaneous actions of DL instability and turbulent eddies, based on which three turbulent flame propagation regimes are identified, namely, instability dominated, instability–turbulence interaction and turbulence dominated regimes. We then perform experiments over an extensive range of conditions, including high pressures, to promote and manipulate the DL instability. The results clearly demonstrate the increase in the acceleration exponent of the turbulent flame propagation as these three regimes are traversed from the weakest to the strongest, which are respectively similar to those of the laminar cellularly unstable flame and the turbulent flame without flame-front instability, and thus validating the scaling analysis. Finally, based on the scaling analysis and the experimental results, we propose a modification of the conventional turbulent flame regime diagram to account for the effects of DL instability.

Copyright

Corresponding author

Email address for correspondence: asaha010112@gmail.com

References

Hide All
Abdel-Gayed, R. G., Bradley, D. & Lawes, M. 1987 Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414 (1847), 389413.
Addabbo, R., Bechtold, J. K. & Matalon, M. 2002 Wrinkling of spherically expanding flames. Proc. Combust. Inst. 29 (2), 15271535.
Akkerman, V. & Bychkov, V. 2005 Velocity of weakly turbulent flames of finite thickness. Combust. Theor. Model. 9 (2), 323351.
Akkerman, V., Bychkov, V. & Eriksson, L.-E. 2007 Numerical study of turbulent flame velocity. Combust. Flame 151 (3), 452471.
Bauwens, C. R., Bergthorson, J. M. & Dorofeev, S. B. 2017 On the interaction of the Darrieus–Landau instability with weak initial turbulence. Proc. Combust. Inst. 36 (2), 28152822.
Bell, J. B., Day, M. S., Shepherd, I. G., Johnson, M. R., Cheng, R. K., Grcar, J. F., Beckner, V. E. & Lijewski, M. J. 2005 Numerical simulation of a laboratory-scale turbulent v-flame. Proc. Natl Acad. Sci. USA 102 (29), 1000610011.
Boughanem, H. & Trouvé, A. 1998 The domain of influence of flame instabilities in turbulent premixed combustion. Symp. (Int) Combust. 27 (1), 971978.
Bradley, D. 1992 How fast can we burn? Proc. Combust. Inst. 24 (1), 247262.
Bradley, D., Lawes, M., Liu, K. & Mansour, M. S. 2013 Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures. Proc. Combust. Inst. 34 (1), 15191526.
Bray, K. N. C. 1990 Studies of the turbulent burning velocity. Proc. R. Soc. Lond. A 431 (1882), 315335.
Burke, M. P., Chen, Z., Ju, Y. & Dryer, F. L. 2009 Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames. Combust. Flame 156 (4), 771779.
Bychkov, V. 2003 Importance of the darrieus-landau instability for strongly corrugated turbulent flames. Phys. Rev. E 68 (6), 066304.
Chaudhuri, S., Akkerman, V. & Law, C. K. 2011 Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84 (2), 026322.
Chaudhuri, S., Saha, A. & Law, C. K. 2015 On flame–turbulence interaction in constant-pressure expanding flames. Proc. Combust. Inst. 35 (2), 13311339.
Chaudhuri, S., Wu, F. & Law, C. K. 2013 Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations. Phys. Rev. E 88 (3), 033005.
Chaudhuri, S., Wu, F., Zhu, D. & Law, C. K. 2012 Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108 (4), 044503.
Chen, J. H. & Im, H. G. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Symp. (Int) Combust. 27 (1), 819826.
Creta, F., Lamioni, R., Lapenna, P. E. & Troiani, G. 2016 Interplay of Darrieus–Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102.
Creta, F. & Matalon, M. 2011 Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225264.
Darrieus, G. 1938 Propagation dun front de flamme. La Technique Moderne 30, 18.
Driscoll, J. F. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34 (1), 91134.
Filatyev, S. A., Driscoll, J. F., Carter, C. D. & Donbar, J. M. 2005 Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame 141 (1), 121.
Fogla, N., Creta, F. & Matalon, M. 2013 Influence of the darrieus-landau instability on the propagation of planar turbulent flames. Proc. Combust. Inst. 34 (1), 15091517.
Fogla, N., Creta, F. & Matalon, M. 2015 Effect of folds and pockets on the topology and propagation of premixed turbulent flames. Combust. Flame 162 (7), 27582777.
Fogla, N., Creta, F. & Matalon, M. 2017 The turbulent flame speed for low-to-moderate turbulence intensities: hydrodynamic theory versus experiments. Combust. Flame 175, 155169.
Jiang, L. J., Shy, S. S., Li, W. Y., Huang, H. M. & Nguyen, M. T. 2016 High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames. Combust. Flame 172, 173182.
Kee, R. J., Gracer, J. F., Miller, J. A. & Meeks, E.1985 Premix: a fortran program for modeling steady laminar one-dimensional premixed flames. Tech. Rep. Sandia National Laboratories, Report SAND85-8249.
Kerstein, A. R., Ashurst, W. T. & Williams, F. A. 1988 Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37, 27282731.
Kido, H., Nakahara, M., Nakashima, K. & Hashimoto, J. 2002 Influence of local flame displacement velocity on turbulent burning velocity. Proc. Combust. Inst. 29 (2), 18551861.
Kobayashi, H., Kawabata, Y. & Maruta, K. 1998 Experimental study on general correlation of turbulent burning velocity at high pressure. Symp. (Int) Combust. 27 (1), 941948.
Kobayashi, H., Seyama, K., Hagiwara, H. & Ogami, Y. 2005 Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 30 (1), 827834.
Landau, L. D. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19 (1), 7785.
Lipatnikov, A. N. & Chomiak, J. 2005 Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31 (1), 173.
Matalon, M. 2007 Intrinsic flame instabilities in premixed and nonpremixed combustion. Annu. Rev. Fluid Mech. 39, 163191.
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.
Pope, S. B. 1985 Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (2), 119192.
Pope, S. B. 2000 Turbulent Flows. chap. 6, Cambridge University Press.
Savarianandam, V. R. & Lawn, C. J. 2006 Burning velocity of premixed turbulent flames in the weakly wrinkled regime. Combust. Flame 146 (1), 118.
Searby, G. & Clavin, P. 1986 Weakly turbulent, wrinkled flames in premixed gases. Combust. Sci. Technol. 46 (3–6), 167193.
Sivashinsky, G. I. 1988 Cascade-renormalization theory of turbulent flame speed. Combust. Sci. Technol. 62 (1–3), 7796.
Troiani, G., Creta, F. & Matalon, M. 2015 Experimental investigation of Darrieus–Landau instability effects on turbulent premixed flames. Proc. Combust. Inst. 35 (2), 14511459.
Venkateswaran, P., Marshall, A. D., Seitzman, J. M. & Lieuwen, T. C. 2014 Turbulent consumption speeds of high hydrogen content fuels from 1–20 atm. Trans. ASME J. Engng Gas Turbines Power 136 (1), 011504.
Wang, H., You, X., Joshi, A., Davis, S., Laskin, A., Egolfopoulos, F. & Law, C. K.2007 USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds. Available at:http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm.
Wu, F., Saha, A., Chaudhuri, S. & Law, C. K. 2015 Propagation speeds of expanding turbulent flames of c 4 to c 8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch-affected local extinction. Proc. Combust. Inst. 35 (2), 15011508.
Yang, S., Saha, A., Wu, F. & Law, C. K. 2016 Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combust. Flame 171, 112118.
Yang, S., Yang, X., Wu, F., Ju, Y. & Law, C. K. 2017 Laminar flame speeds and kinetic modeling of H2/O2/diluent mixtures at sub-atmospheric and elevated pressures. Proc. Combust. Inst. 36 (1), 491498.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Yang et al. supplementary material
Yang et al. supplementary material 1

 Unknown (709 KB)
709 KB

Role of Darrieus–Landau instability in propagation of expanding turbulent flames

  • Sheng Yang (a1), Abhishek Saha (a1), Zirui Liu (a1) and Chung K. Law (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed