Skip to main content Accessibility help
×
×
Home

Richtmyer–Meshkov instability on a quasi-single-mode interface

  • Yu Liang (a1), Zhigang Zhai (a1), Juchun Ding (a1) and Xisheng Luo (a1)

Abstract

Experiments on Richtmyer–Meshkov instability of quasi-single-mode interfaces are performed. Four quasi-single-mode air/ $\text{SF}_{6}$ interfaces with different deviations from the single-mode one are generated by the soap film technique to evaluate the effects of high-order modes on amplitude growth in the linear and weakly nonlinear stages. For each case, two different initial amplitudes are considered to highlight the high-amplitude effect. For the single-mode and saw-tooth interfaces with high initial amplitude, a cavity is observed at the spike head, providing experimental evidence for the previous numerical results for the first time. For the quasi-single-mode interfaces, the fundamental mode is the dominant one such that it determines the amplitude linear growth, and subsequently the impulsive theory gives a reasonable prediction of the experiments by introducing a reduction factor. The discrepancy in linear growth rates between the experiment and the prediction is amplified as the quasi-single-mode interface deviates more severely from the single-mode one. In the weakly nonlinear stage, the nonlinear model valid for a single-mode interface with small amplitude loses efficacy, which indicates that the effects of high-order modes on amplitude growth must be considered. For the saw-tooth interface with small amplitude, the amplitudes of the first three harmonics are extracted from the experiment and compared with the previous theory. The comparison proves that each initial mode develops independently in the linear and weakly nonlinear stages. A nonlinear model proposed by Zhang & Guo (J. Fluid Mech., vol. 786, 2016, pp. 47–61) is then modified by considering the effects of high-order modes. The modified model is proved to be valid in the weakly nonlinear stage even for the cases with high initial amplitude. More high-order modes are needed to match the experiment for the interfaces with a more severe deviation from the single-mode one.

Copyright

Corresponding author

Email address for correspondence: sanjing@ustc.edu.cn

References

Hide All
Aleshin, A. N., Lazareva, E. V., Chebotareva, E. I., Sergeev, S. V. & Zaytsev, S. G. 1997 Investigation of Richtmyer–Meshkov instability induced by the incident and reflected shock waves. In Proceedings of the Sixth International Workshop on the Physics of Compressible Turbulent Mixing, pp. 16. IUSTI, Universite de Provence.
Bakhrakh, S., Klopov, B., Meshkov, E., Tolshmyakov, A. & Yanilkin, Y. 1995 Development of perturbations of a shock-accelerated interface between two gases. J. Appl. Mech. Tech. Phys. 36, 341346.10.1007/BF02369769
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.10.1146/annurev.fluid.34.090101.162238
Brouillette, M. & Sturevant, B. 1993 Experiments on the Richtmyer–Meshkov instability: small-scale perturbation on a plane interface. Phys. Fluids A 5, 916930.10.1063/1.858637
Buttler, W. T., Oró, D. M., Preston, D. L., Mikaelian, K. O., Cherne, F. J., Hixson, R. S., Mariam, F. G., Morris, C., Stone, J. B., Terrones, G. et al. 2012 Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 6084.10.1017/jfm.2012.190
Collins, B. D. & Jacobs, J. W. 2002 PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface. J. Fluid Mech. 464, 113136.10.1017/S0022112002008844
Dell, Z. R., Pandian, A., Bhowmick, A. K., Swisher, N. C., Stanic, M., Stellingwerf, R. F. & Abarzhi, S. I. 2017 Maximum initial growth-rate of strong-shock-driven Richtmyer–Meshkov instability. Phys. Plasmas 24 (9), 090702.10.1063/1.4986903
Di Stefano, C. A., Malamud, G., Kuranz, C. C., Klein, S. R. & Drake, R. P. 2015 Measurement of Richtmyer–Meshkov mode coupling under steady shock conditions and at high energy density. High Energy Dens. Phys. 17, 263269.10.1016/j.hedp.2015.09.001
Dimonte, G., Frerking, C. E., Schneider, M. & Remington, B. 1996 Richtmyer–Meshkov instability with strong rdiatively driven shocks. Phys. Plasmas 3, 614630.10.1063/1.871889
Guo, X., Ding, J., Luo, X. & Zhai, Z. 2018 Evolution of shocked multimode interface with sharp corners. Phys. Rev. Fluids 3, 114004.10.1103/PhysRevFluids.3.114004
Hawley, J. F. & Zabusky, N. J. 1989 Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett. 63 (12), 12411244.10.1103/PhysRevLett.63.1241
Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schneider, M., Sharp, D. H., Velikovich, A. L., Weaver, R. P. & Zhang, Q. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.10.1017/S0022112099004838
Isenberg, C. 1992 The Science of Soap Films and Soap Bubbles. Dover publications.
Jacobs, J. W. & Krivets, V. V. 2005 Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17, 034105.10.1063/1.1852574
Jones, M. A. & Jacobs, J. W. 1997 A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas interface. Phys. Fluids 9, 30783085.10.1063/1.869416
Jourdan, G. & Houas, L. 2005 High-amplitude single-mode perturbation evolution at the Richtmyer–Meshkov instability. Phys. Rev. Lett. 95, 204502.10.1103/PhysRevLett.95.204502
Lindl, J., Landen, O., Edwards, J., Moses, E. & Team, N. 2014 Review of the national ignition campaign 2009–2012. Phys. Plasmas 21, 020501.10.1063/1.4865400
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.10.1017/jfm.2018.628
Lombardini, M. & Pullin, D. I. 2009 Startup process in the Richtmyer–Meshkov instability. Phys. Fluids 21 (4), 044104.10.1063/1.3091943
Luo, X., Dong, P., Si, T. & Zhai, Z. 2016 The Richtmyer–Meshkov instability of a ‘V’ shaped air/SF6 interface. J. Fluid Mech. 802, 186202.10.1017/jfm.2016.476
Luo, X., Liang, Y., Si, T. & Zhai, Z. 2019 Effects of non-periodic portions of interface on Richtmyer–Meshkov instability. J. Fluid Mech. 861, 309327.10.1017/jfm.2018.923
Luo, X., Wang, X. & Si, T. 2013 The Richtmyer–Meshkov instability of a three-dimensional air/SF6 interface with a minimum-surface feature. J. Fluid Mech. 722, R2.10.1017/jfm.2013.148
Mariani, C., Vandenboomgaerde, M., Jourdan, G., Souffland, D. & Houas, L. 2008 Investigation of the Richtmyer–Meshkov instability with stereolithographed interfaces. Phys. Rev. Lett. 100, 254503.10.1103/PhysRevLett.100.254503
McFarland, J. A., Greenough, J. A. & Ranjan, D. 2011 Computational parametric study of a Richtmyer–Meshkov instability for an inclined interface. Phys. Rev. E 84 (2), 026303.
McFarland, J. A., Greenough, J. A. & Ranjan, D. 2013 Investigation of the initial perturbation amplitude for the inclined interface Richtmyer–Meshkov instability. Phys. Scr. 2013 (T155), 014014.
McFarland, J. A., Reilly, D., Black, W., Greenough, J. A. & Ranjan, D. 2015 Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer–Meshkov instability. Phys. Rev. E 92 (1), 013023.
McFarland, J., Reilly, D., Creel, S., McDonald, C., Finn, T. & Ranjan, D. 2014 Experimental investigation of the inclined interface Richtmyer–Meshkov instability before and after reshock. Exp. Fluids 55 (1), 16401653.10.1007/s00348-013-1640-1
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.10.1007/BF01015969
Mikaelian, K. O. 2005 Richtmyer–Meshkov instability of arbitrary shapes. Phys. Fluids 17, 034101.10.1063/1.1848547
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J. & Ranjan, D. 2017 Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779825.10.1017/jfm.2017.664
Morgan, R. V., Aure, R., Stockero, J. D., Greenough, J. A., Cabot, W., Likhachev, O. A. & Jacobs, J. W. 2012 On the late-time growth of the two-dimensional Richtmyer–Meshkov instabilities in shock tube experiments. J. Fluid Mech. 712, 354383.10.1017/jfm.2012.426
Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer–Meshkov instability of incompressible fluids. J. Fluid Mech. 485, 243277.10.1017/S002211200300452X
Prasad, J. K., Rasheed, A., Kumar, S. & Sturtevant, B. 2000 The late-time development of the Richtmyer–Meshkov instability. Phys. Fluids 12, 21082115.10.1063/1.870456
Ranjan, D., Niederhaus, J., Oakley, J., Anderson, M. & Bonazza, R. 2009 Experimental investigation of shock-induced distortion of a light spherical gas inhomogeneity. In Shock Waves, pp. 11751180. Springer.10.1007/978-3-540-85181-3_61
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43, 117140.10.1146/annurev-fluid-122109-160744
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.10.1002/cpa.3160130207
Rikanati, A., Oron, D., Sadot, O. & Shvarts, D. 2003 High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 67, 026307.
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L. A., Erez, G., Ben-Dor, G. & Shvarts, D. 1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80, 16541657.10.1103/PhysRevLett.80.1654
Sadot, O., Rikanati, A., Oron, D., Ben-Dor, G. & Shvarts, D. 2003 An experimental study of the high Mach number and high initial-amplitude effects on the evoltion of the single-mode Richtmyer–Meshkov instability. Laser Part. Beams 21, 341346.10.1017/S0263034603213082
Shimoda, J., Inoue, T., Ohira, Y., Yamazaki, R., Bamba, A. & Vink, J. 2015 On cosmic-ray production efficiency at Supernova remnant shocks propagating into realistic diffuse interstellar medium. Astrophys. J. 803, 98103.10.1088/0004-637X/803/2/98
Vandenboomgaerde, M., Gauthier, S. & Mügler, C. 2002 Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14 (3), 11111122.10.1063/1.1447914
Vandenboomgaerde, M., Rouzier, P., Souffland, D., Biamino, L., Jourdan, G., Houas, L. & Mariani, C. 2018 Nonlinear growth of the converging Richtmyer–Meshkov instability in a conventional shock tube. Phys. Rev. Fluids 3, 014001.10.1103/PhysRevFluids.3.014001
Vandenboomgaerde, M., Souffland, D., Mariani, C., Biamino, L., Jourdan, G. & Houas, L. 2014 An experimental and numerical investigation of the dependency on the initial conditions of the Richtmyer–Meshkov instability. Phys. Fluids 26, 024109.10.1063/1.4865836
Velikovich, A., Herrmann, M. & Abarzhi, S. 2014 Perturbation theory and numerical modelling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer–Meshkov instability. J. Fluid Mech. 751, 432479.10.1017/jfm.2014.312
Vetter, M. & Sturtevant, B. 1995 Experiments on the Richtmyer–Meshkov instability of an air/SF6 interface. Shock Waves 4, 247252.10.1007/BF01416035
Wang, M., Si, T. & Luo, X. 2013 Generation of polygonal gas interfaces by soap film for Richtmyer–Meshkov instability study. Exp. Fluids 54, 14271435.10.1007/s00348-012-1427-9
Wang, T., Liu, J. H., Bai, J. S., Jiang, Y., Li, P. & Liu, K. 2012 Experimental and numerical investigation of inclined air/SF6 interface instability under shock wave. Z. Angew. Math. Mech. 33 (1), 3750.10.1007/s10483-012-1532-x
Zhai, Z., Wang, M., Si, T. & Luo, X. 2014 On the interaction of a planar shock with a light SF6 polygonal interface. J. Fluid Mech. 757, 800816.10.1017/jfm.2014.516
Zhai, Z., Zou, L., Wu, Q. & Luo, X. 2018 Review of experimental Richtmyer–Meshkov instability in shock tube: from simple to complex. Proc. Inst. Mech. Engrs 232, 28302849.
Zhang, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.10.1017/jfm.2015.641
Zhang, Q. & Sohn, S. I. 1996 An analytical nonlinear theory of Richtmyer–Meshkov instability. Phys. Lett. A 212, 149155.10.1016/0375-9601(96)00021-7
Zhang, Q. & Sohn, S. I. 1997 Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9, 11061124.10.1063/1.869202
Zhou, Y. 2017a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.
Zhou, Y. 2017b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed