Skip to main content Accessibility help
×
Home

Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection

  • Rui Ni (a1), Shi-Di Huang (a1) and Ke-Qing Xia (a1)

Abstract

We report an experimental study of the large-scale circulation (LSC) reversal in quasi-2D turbulent thermal convection, in which the aspect ratio ${\it\Gamma}$ ( $=\text{height}/\text{length}$ of a rectangular box) is used as a parameter to perturb the stability of the LSC. It is found that the mean time interval $\langle {\it\tau}\rangle$ between two successive reversals increases strongly with increasing ${\it\Gamma}$ . A stochastic model is proposed to incorporate the effect of the corner rolls. In the model, the aspect ratio serves as a tuning parameter for the relative weight of the corner rolls that damp the LSC. The model predictions for the shape of the bistable states of the system and $\langle {\it\tau}\rangle$ agree excellently with the experimental results, with $\langle {\it\tau}\rangle$ having an unexpected stretched exponential Rayleigh number dependence, ${\sim}\!\exp (Ra^{{\it\alpha}})$ . We further show quantitatively that the main damping force of the LSC in a quasi-2D system is from the corner rolls rather than the viscous drag from the sidewalls, which bridges the difference found in quasi-2D and 3D systems.

Copyright

Corresponding author

Email address for correspondence: kxia@phy.cuhk.edu.hk

Footnotes

Hide All

Present address: Department of Mechanical and Nuclear Engineering, Pennsylvania State University, State College, PA 16802-1412, USA.

Footnotes

References

Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Araujo, F. F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95 (8), 084502.
Assaf, M., Angheluta, L. & Goldenfeld, N. 2011 Rare fluctuations and large-scale circulation cessations in turbulent convection. Phys. Rev. Lett. 107, 044502.
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95 (2), 024502.
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.
Brown, E. & Ahlers, G. 2008 A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20 (7), 075101.
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.
Chandra, M. & Verma, M. K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83 (6), 067303.
Chandra, M. & Verma, M. K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. 35, 58.
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.
van Doorn, E., Dhruva, B., Sreenivasan, K. & Cassella, V. 2000 Statistics of wind direction and its increments. Phys. Fluids 12, 15291534.
Gardiner, C. W. 2004 Handbook of Stochastic Methods. Springer.
Glatzmaier, G. A., Coe, R. S., Hongre, L. & Roberts, P. H. 1999 The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401, 885890.
He, X.-Z., Tong, P. & Xia, K.-Q. 2007 Measured thermal dissipation field in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 144501.
Kadanoff, L. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54 (8), 34.
Lam, S., Shang, X.-D., Zhou, S.-Q. & Xia, K.-Q. 2002 Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh–Bénard convection. Phys. Rev. E 65, 066306.
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.
Sugiyama, K., Ni, R., Stevens, R. J. A. M., Chan, T.-S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.
Sun, C., Xi, H.-D. & Xia, K.-Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.
Tsuji, Y., Mizuno, T., Mashiko, T. & Sano, M. 2005 Mean wind in convective turbulence of mercury. Phys. Rev. Lett. 94 (3), 034501.
Vasilev, A., Yu & Frick, P. G. 2011 Reversals of large-scale circulation in turbulent convection in rectangular cavities. JETP Lett. 93, 330334.
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75 (6), 066307.
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73 (5), 056312.
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3, 052001.
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.
Xia, K.-Q., Zhou, S.-Q. & Sun, C. 2005 Statistics and scaling of the velocity field in turbulent thermal convection. In Progress in Turbulence, pp. 163170.
Yanagisawa, T., Yamagishi, Y., Hamano, Y., Tasaka, Y. & Takeda, Y. 2011 Spontaneous flow reversals in Rayleigh–Bénard convection of a liquid metal. Phys. Rev. E 83 (3), 036307.
Zhou, Q. & Xia, K.-Q. 2010 Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New J. Phys. 12, 075006.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed