Skip to main content Accessibility help

Restricted equilibrium and the energy cascade in rotating and stratified flows

  • Corentin Herbert (a1), Annick Pouquet (a1) (a2) and Raffaele Marino (a1) (a3)


Most turbulent flows appearing in nature (e.g. geophysical and astrophysical flows) are subjected to strong rotation and stratification. These effects break the symmetries of classical, homogenous isotropic turbulence. In doing so, they introduce a natural decomposition of phase space in terms of wave modes and potential vorticity modes. The appearance of a new time scale, associated with the propagation of waves, hinders the understanding of energy transfers across scales. For instance, it is difficult to predict a priori whether the energy cascades downscale as in homogeneous isotropic turbulence or upscale as expected from balanced dynamics. In this paper, we suggest a theoretical approach based on equilibrium statistical mechanics for the ideal system, inspired by the restricted partition function formalism introduced in metastability studies. We focus on the qualitative features of the inviscid system, taking into account either all the modes or just the slow modes. Specifically, we show that at absolute equilibrium, i.e. when all the modes are considered, no negative temperature states exist, and the isotropic energy spectrum is close to equipartition. By contrast, when the statistics is restricted to the contributions of the slow modes, we find that in the presence of rotation, there exists a regime of negative temperature featuring an infrared divergence in both the isotropic and the axisymmetric average energy spectrum, characteristic of an inverse cascade regime. Such regimes are not allowed for purely stratified flows, even in the restricted ensemble, because the slow manifold then partitions into modes that carry potential vorticity on the one hand, and hydrostatically balanced but vorticity-free modes, the so-called vertical shear horizontal flows, on the other hand, which forbid the appearance of negative temperatures.


Corresponding author

Email address for correspondence:


Hide All
Aluie, H. & Kurien, S. 2011 Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows. Europhys. Lett. 96 (4), 44006.
Baer, F. & Tribbia, J. J. 1977 On complete filtering of gravity modes through nonlinear initialization. Mon. Weath. Rev. 105, 15361539.
Bartello, P. 1995 Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 44104428.
Bartello, P. & Tobias, S. M. 2013 Sensitivity of stratified turbulence to the buoyancy Reynolds number. J. Fluid Mech. 725, 122.
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427451.
Bouchet, F. 2008 Simpler variational problems for statistical equilibria of the 2D Euler equation and other systems with long range interactions. Physica D 237, 19761981.
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227295.
Bourouiba, L. 2008 Model of a truncated fast rotating flow at infinite Reynolds number. Phys. Fluids 20, 075112.
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J. M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.
Campa, A., Dauxois, T. & Ruffo, S. 2009 Statistical mechanics and dynamics of solvable models with long-range interactions. Phys. Rep. 480, 57159.
Capocaccia, D., Cassandro, M. & Olivieri, E. 1974 A study of metastability in the Ising model. Commun. Math. Phys. 39 (3), 185205.
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871094.
Chen, Q., Chen, S. & Eyink, G. 2003 The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15, 361374.
Chen, Q., Chen, S., Eyink, G. L. & Holm, D. D. 2005 Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 542, 139164.
Craya, A.1958 Contribution à l’analyse de la turbulence associée à des vitesses moyennes. Tech. Rep. Publ. Sci. Tech. Ministère de l’Air 345. Ministère de l’Air, Paris, France.
Dauxois, T., Ruffo, S., Arimondo, E. & Wilkens, M.(Eds) 2002 Dynamics and Thermodynamics of Systems with Long Range Interactions, Lecture Notes in Physics, vol. 602. Springer.
Delache, A., Cambon, C. & Godeferd, F. 2014 Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26 (2), 025104.
Dhar, D. & Lebowitz, J. L. 2010 Restricted equilibrium ensembles: exact equation of state of a model glass. Europhys. Lett. 92 (2), 20008.
Dubrulle, B. & Valdettaro, L. 1992 Consequences of rotation in energetics of accretion disks. Astron. Astrophys. 263, 387400.
Ellis, R. S., Haven, K. & Turkington, B. 2000 Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles. J. Stat. Phys. 101, 9991064.
Embid, P. F. & Majda, A. J. 1998 Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87 (1–2), 150.
Errico, R. M. 1984 The statistical equilibrium solution of a primitive-equation model. Tellus A 36 (1), 4251.
Fox, D. G. & Orszag, S. A. 1973 Inviscid dynamics of two-dimensional turbulence. Phys. Fluids 16, 169171.
Godeferd, F. S. & Cambon, C. 1994 Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6 (6), 20842100.
Godoy-Diana, R., Chomaz, J.-M. & Billant, P. 2004 Vertical length scale selection for pancake vortices in strongly stratified viscous fluids. J. Fluid Mech. 504, 229238.
Herbert, C. 2013 Additional invariants and statistical equilibria for the 2D Euler equations on a spherical domain. J. Stat. Phys. 152, 10841114.
Herbert, C. 2014 Restricted partition functions and inverse energy cascades in parity symmetry breaking flows. Phys. Rev. E 89, 013010.
Herbert, C., Dubrulle, B., Chavanis, P.-H. & Paillard, D. 2012a Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere. Phys. Rev. E 85, 056304.
Herbert, C., Dubrulle, B., Chavanis, P.-H. & Paillard, D. 2012b Statistical mechanics of quasi-geostrophic flows on a rotating sphere. J. Stat. Mech. 2012, P05023.
Herring, J. R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17, 859872.
Herring, J. R. 1977 On the statistical theory of two-dimensional topographic turbulence. J. Atmos. Sci. 34, 17311750.
Herring, J. R., Kerr, R. M. & Rotunno, R. 1994 Ertel’s potential vorticity in unstratified turbulence. J. Atmos. Sci. 51, 3547.
Herring, J. R. & Métais, O. 1989 Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 202 (1), 97115.
Holloway, G. 1986 Eddies, waves, circulation, and mixing: statistical geofluid mechanics. Annu. Rev. Fluid Mech. 18, 91147.
Julien, K., Knobloch, E., Milliff, R. & Werne, J. 2006 Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555, 233274.
Khinchin, A. 1949 The Mathematical Foundations of Statistical Mechanics. Dover.
Kiessling, M. K. H. & Lebowitz, J. L. 1997 The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys. 42, 4356.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301305.
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.
Kraichnan, R. H. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745752.
Kraichnan, R. H. 1975 Statistical dynamics of two-dimensional flow. J. Fluid Mech. 67, 155175.
Kraichnan, R. H. & Montgomery, D. C. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43, 547619.
Lamriben, C., Cortet, P.-P. & Moisy, F. 2011 Direct measurements of anisotropic energy transfers in a rotating turbulence experiment. Phys. Rev. Lett. 107 (2), 024503.
Lee, T. D. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Maths 10, 6974.
Leith, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958968.
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.
Lindborg, E. & Brethouwer, G. 2007 Stratified turbulence forced in rotational and divergent modes. J. Fluid Mech. 586, 83108.
Lorenz, E. N. 1980 Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 16851699.
Lorenz, E. N. 1986 On the existence of a slow manifold. J. Atmos. Sci. 43, 15471558.
Lorenz, E. N. 1992 The slow manifold—what is it? J. Atmos. Sci. 49, 24492451.
Lorenz, E. N. & Krishnamurthy, V. 1987 On the nonexistence of a slow manifold. J. Atmos. Sci. 44, 29402950.
Lucarini, V., Blender, R., Herbert, C., Pascale, S., Ragone, F. & Wouters, J.2014 Mathematical and physical ideas for climate science. Rev. Geophys. in press arXiv:1311.1190.
Machenhauer, B. 1977 On the dynamics of gravity oscillations in a shallow water model, with application to normal mode initialization. Beitr. Phys. Atmos. 50, 253271.
Mahalov, A. & Zhou, Y. 1996 Analytical and phenomenological studies of rotating turbulence. Phys. Fluids 8 (8), 21382152.
Marino, R., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2013 Inverse cascades in rotating stratified turbulence: fast growth of large scales. Europhys. Lett. 102, 44006.
McWilliams, J. C. 2006 Fundamentals of Geophysical Fluid Dynamics. Cambridge University Press.
Merryfield, W. J. 1998 Effects of stratification on quasi-geostrophic inviscid equilibria. J. Fluid Mech. 354, 345356.
Merryfield, W. J. & Holloway, G. 1996 Inviscid quasi-geostrophic flow over topography: testing statistical mechanical theory. J. Fluid Mech. 309, 8591.
Métais, O., Bartello, P., Garnier, E., Riley, J. J. & Lesieur, M. 1996 Inverse cascade in stably stratified rotating turbulence. Dyn. Atmos. Oceans 23 (1), 193203.
Miller, J. 1990 Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65, 21372140.
Mininni, P. D., Dmitruk, P., Matthaeus, W. H. & Pouquet, A. 2011 Large-scale behavior and statistical equilibria in rotating flows. Phys. Rev. E 83, 016309.
Mininni, P. D. & Pouquet, A. 2010a Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22, 035105.
Mininni, P. D. & Pouquet, A. 2010b Rotating helical turbulence. II. Intermittency, scale invariance, and structures. Phys. Fluids 22, 035106.
Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Isotropization at small scales of rotating helically driven turbulence. J. Fluid Mech. 699, 263279.
Montgomery, D. & Turner, L. 1982 Two-and-a-half-dimensional magnetohydrodynamic turbulence. Phys. Fluids 25 (2), 345349.
Nazarenko, S. V. 2010 Wave Turbulence, Lecture Notes in Physics, vol. 825. Springer.
Newell, A. C. & Rumpf, B. 2011 Wave turbulence. Annu. Rev. Fluid Mech. 43 (1), 5978.
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.
Penrose, O. & Lebowitz, J. L. 1971 Rigorous treatment of metastable states in the van der Waals–Maxwell theory. J. Stat. Phys. 3 (2), 211236.
Penrose, O. & Lebowitz, J. L. 1979 Towards a rigorous molecular theory of metastability. In Fluctuation Phenomena (ed. Montroll, E. W. & Lebowitz, J. L.), chap. 5, pp. 293340. North-Holland.
Polzin, K. L. & Lvov, Y. V. 2011 Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys. 49 (4), RG4003.
Pouquet, A. & Marino, R. 2013 Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 111, 234501.
Pouquet, A. & Mininni, P. D. 2010 The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics. Phil. Trans. R. Soc. A 368, 16351662.
Rhines, P. B. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11, 401441.
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.
Riley, J. J. & de Bruyn Kops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
Salmon, R. 2010 The shape of the main thermocline, revisited. J. Mar. Res. 68 (3–4), 541568.
Salmon, R., Holloway, G. & Hendershott, M. C. 1976 The equilibrium statistical mechanics of simple quasi-geostrophic models. J. Fluid Mech. 75, 691703.
Seyler, C. E. Jr, Salu, Y., Montgomery, D. & Knorr, G. 1975 Two-dimensional turbulence in inviscid fluids or guiding center plasmas. Phys. Fluids 18, 803813.
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 24672470.
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11 (6), 16081622.
Smith, L. M. & Waleffe, F. 2002 Generation of slow large scales in forced rotating stratified turbulence. J. Fluid Mech. 451, 145168.
Staquet, C. & Riley, J. J. 1989 On the velocity field associated with potential vorticity. Dyn. Atmos. Oceans 14, 93123.
Teitelbaum, T. & Mininni, P. D. 2009 Effect of helicity and rotation on the free decay of turbulent flows. Phys. Rev. Lett. 103, 14501.
Touchette, H., Ellis, R. S. & Turkington, B. 2004 An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles. Physica A 340, 138146.
Turkington, B. 1999 Statistical equilibrium measures and coherent states in two-dimensional turbulence. Commun. Pure Appl. Maths 52, 781809.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press.
Vanneste, J. 2013 Balance and spontaneous wave generation in geophysical flows. Annu. Rev. Fluid Mech. 45, 147172.
Vautard, R. & Legras, B. 1986 Invariant manifolds, quasi-geostrophy, and initialization. J. Atmos. Sci 43, 565584.
Venaille, A. & Bouchet, F. 2011 Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows. J. Stat. Phys. 143, 346380.
Waite, M. L. 2011 Stratified turbulence at the buoyancy scale. Phys. Fluids 23 (6), 066602.
Waite, M. L. 2013 Potential enstrophy in stratified turbulence. J. Fluid Mech. 722, R4.
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.
Waite, M. L. & Bartello, P. 2006 The transition from geostrophic to stratified turbulence. J. Fluid Mech. 568, 89108.
Waleffe, F. 1992 The nature of triad interactions in homogeneous turbulence. Phys. Fluids A 4, 350363.
Warn, T. 1986 Statistical mechanical equilibria of the shallow water equations. Tellus A 38 (1), 111.
Warn, T. 1997 Nonlinear balance and quasi-geostrophic sets. Atmos.-Ocean 35, 135145.
Wingate, B., Embid, P. F., Holmes-Cerfon, M. & Taylor, M. 2011 Low Rossby limiting dynamics for stably stratified flow with finite Froude number. J. Fluid Mech. 676, 546571.
Yamazaki, Y., Kaneda, Y. & Rubinstein, R. 2002 Dynamics of inviscid truncated model of rotating turbulence. J. Phys. Soc. Japan 71 (1), 8192.
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6, 32213223.
Zhu, J.-Z., Yang, W. & Zhu, G.-Y. 2014 On one-chiral-sector-dominated turbulence states. J. Fluid Mech. 739, 479501.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Restricted equilibrium and the energy cascade in rotating and stratified flows

  • Corentin Herbert (a1), Annick Pouquet (a1) (a2) and Raffaele Marino (a1) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed