Skip to main content Accessibility help
×
Home

Response of a two-dimensional liquid foam to air injection: swelling rate, fingering and fracture

  • Imen Ben Salem (a1), Isabelle Cantat (a1) and Benjamin Dollet (a1)

Abstract

The response of a two-dimensional liquid foam to a localized air injection is investigated experimentally and theoretically. The experiments show a rich phenomenology, with two essentially distinct behaviours, depending on the injection conditions. At low flux, the injected air forms a central bubble that grows inside the foam and induces plastic rearrangements, without film rupture. This ‘pure swelling’ regime is reminiscent of ductile fracture. In this regime, the central bubble shows fingering patterns beyond a certain velocity. The dependence among the swelling rate, the injection overpressure and the other control parameters, namely cell gap, bubble size and foam area, is captured by a simple balance between the pressure drop and bubble/wall friction under a radial assumption. Fingering is successfully modelled by the linear stability analysis of an azimuthal perturbation of the radial model; yield stress becomes an important parameter to determine the finger width. At high injection rate, films are broken and narrow cracks form rapidly through the foam, reminiscent of brittle fracture. Criteria for the transition between ductile and brittle behaviours are investigated, both at the local and global scales.

Copyright

Corresponding author

Email address for correspondence: benjamin.dollet@univ-rennes1.fr

References

Hide All
Arciniaga, M., Kuo, C.-C & Dennin, M. 2011 Size dependent brittle to ductile transition in bubble rafts. Colloids Surf. A 382, 3641.
Arif, S., Tsai, J. C. & Hilgenfeldt, S. 2010 Speed of crack propagation in dry aqueous foam. Eur. Phys. Lett. 92, 38001.
Arif, S., Tsai, J. C. & Hilgenfeldt, S. 2012 Spontaneous brittle-to-ductile transition in aqueous foam. J. Rheol. 56, 485499.
Baroud, C. N., Gallaire, F. & Dangla, R. 2010 Dynamics of microfluidic droplets. Lab on a Chip 10, 20322045.
Baumberger, T., Caroli, C., Martina, D. & Ronsin, O. 2008 Magic angles and cross-hatching instability in hydrogel fracture. Phys. Rev. Lett. 100, 178303.
Ben Amar, M. 1995 Viscous fingering: a singularity in Laplacian growth models. Phys. Rev. E 51, R3819R3822.
Ben Amar, M. & Corvera Poiré, E. 1999 Pushing a non-Newtonian fluid in a Hele–Shaw cell: from fingers to needles. Phys. Fluids 11, 17571767.
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58, 977999.
Bonn, D., Kellay, H., Ben Amar, M. & Meunier, J. 1995 Viscous finger widening with surfactants and polymers. Phys. Rev. Lett. 75, 21322135.
Bouchbinder, E., Fineberg, J. & Marder, M. 2010 Dynamics of simple cracks. Annu. Rev. Condens. Matter 1, 371395.
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.
Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. & Saint-Jalmes, A. 2010 Les Mousses. Structure et Dynamique. Belin.
Cantat, I., Kern, N. & Delannay, R. 2004 Dissipation in foam flowing through narrow channels. Europhys. Lett. 65, 726732.
Cheddadi, I., Saramito, P., Dollet, B., Raufaste, C. & Graner, F. 2011 Understanding and predicting viscous, elastic, plastic flows. Eur. Phys. J. E 34, 115.
Chevalier, C., Lindner, A., Leroux, M. & Clément, E. 2009 Morphodynamics during air injection into a confined granular suspension. J. Non-Newtonian Fluid Mech. 158, 6372.
Chowdiah, P., Misra, B. R., Kilbane, J. J., Srivastava, V. J. & Hayes, T. D. 1998 Foam propagation through soils for enhanced in-situ remediation. J. Hazard. Mater. 62 (3), 265280.
Cortet, P. P., Santucci, S., Vanel, L. & Ciliberto, S. 2005 Slow crack growth in polycarbonate films. Europhys. Lett. 71, 242248.
Courty, S., Dollet, B., Elias, F., Heinig, P. & Graner, F. 2003 Two-dimensional shear modulus of a Langmuir foam. Europhys. Lett. 64, 709715.
Coussot, P. 1999 Saffman–Taylor instability in yield-stress fluids. J. Fluid Mech. 380, 363376.
Denkov, N. D., Subramanian, V., Gurovich, D. & Lips, A. 2005 Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids Surf. A 263, 129145.
Denkov, N. D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K. P. & Lips, A. 2009a The role of surfactant type and bubble surface mobility in foam rheology. Soft Matt. 5, 33893408.
Denkov, N. D., Tcholakova, S., Golemanov, K. & Lips, A. 2009b Jamming in sheared foams and emulsions, explained by critical instability of the films between neighbouring bubbles and drops. Phys. Rev. Lett. 103, 118302.
Dennin, M. & Knobler, C. M. 1997 Experimental studies of bubble dynamics in a slowly driven monolayer foam. Phys. Rev. Lett. 78, 24852488.
Dollet, B. & Cantat, I. 2010 Deformation of soap films pushed through tubes at high velocity. J. Fluid Mech. 652, 529539.
Dollet, B. & Graner, F. 2007 Two-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow. J. Fluid Mech. 585, 181211.
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth–Heinemann.
Freund, L. B. 1990 Dynamic Fracture Mechanics. Cambridge University Press.
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2002 Gouttes, Bulles, Perles et Ondes. Belin.
Gladden, J. R. & Belmonte, A. 2007 Motion of a viscoelastic micellar fluid around a cylinder: flow and fracture. Phys. Rev. Lett. 98, 224501.
Goerke, J. 1998 Pulmonary surfactant: functions and molecular composition. Biochem. Biophys. Acta 1408, 7989.
Hilgenfeldt, S., Arif, S. & Tsai, J. C. 2008 Foam: a multiphase system with many facets. Phil. Trans. R. Soc. Lond. A 366, 21452159.
Hirasaki, G. J. & Lawson, J. B. 1985 Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. Soc. Petrol. Engng J. 176190.
Höhler, R. & Cohen-Addad, S. 2005 Rheology of liquid foam. J. Phys.: Condens. Matter 17, R1041R1069.
Holtzman, R. & Juanes, R. 2010 Crossover from fingering to fracturing in deformable disordered media. Phys. Rev. E 82, 046305046309.
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.
Kondic, L., Palffy-Muhoray, P. & Shelley, M. J. 1996 Models of non-Newtonian Hele–Shaw flow. Phys. Rev. E 54, R4536R4539.
Kondic, L., Shelley, M. J. & Palffy-Muhoray, P. 1998 Non-Newtonian Hele–Shaw flow and the Saffman–Taylor instability. Phys. Rev. Lett. 80, 14331436.
Kraynik, A. M. & Hansen, M. G. 1987 Foam rheology: a model of viscous phenomena. J. Rheol. 31, 175205.
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 4254.
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.
Lemaire, E., Levitz, P., Daccord, G. & van Damme, H. 1991 From viscous fingering to viscoelastic fracturing in colloidal fluids. Phys. Rev. Lett. 67, 20092012.
Lindner, A., Bonn, D., Corvera Poiré, E., Ben Amar, M. & Meunier, J. 2002 Viscous fingering in non-Newtonian fluids. J. Fluid Mech. 469, 237256.
Lindner, A., Coussot, P. & Bonn, D. 2000 Viscous fingering in a yield-stress fluid. Phys. Rev. Lett. 85, 314317.
Livne, A., Bouchbinder, E. & Fineberg, J. 2008 Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Phys. Rev. Lett. 101, 264301.
Mann, E. K. & Primak, S. V. 1999 Stability of two-dimensional foams in Langmuir monolayers. Phys. Rev. Lett. 83, 53975400.
Marmottant, P. & Raven, J. P. 2009 Microfluidics with foams. Soft Matt. 5, 33853388.
Park, S. S. & Durian, D. J. 1994 Viscous and elastic fingering instabilities in foam. Phys. Rev. Lett. 72, 33473350.
Paterson, L. 1981 Radial fingering in a Hele–Shaw cell. J. Fluid Mech. 113, 513529.
Princen, H. M. 1983 Rheology of foams and highly concentrated emulsions. I. Elastic properties and yield stress of a cylindrical model system. J. Colloid Interface Sci. 91, 160175.
Ratulowski, J. & Chang, H.-C. 1989 Transport of gas bubbles in capillaries. Phys. Fluids A 1, 16421655.
Raufaste, C., Foulon, A. & Dollet, B. 2009 Dissipation in quasi-two-dimensional flowing foams. Phys. Fluids 21, 053102053110.
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.
Sandnes, B., Flekkøy, E. G., Knudsen, H. A., Måløy, K. J. & See, H. 2011 Patterns and flow in frictional fluid dynamics. Nat. Commun. 2, 288.
Tabuteau, H., Mora, S., Porte, G., Abkarian, M. & Ligoure, C. 2009 Microscopic mechanisms of the brittleness of viscoelastic fluids. Phys. Rev. Lett. 102, 155501.
Terriac, E., Etrillard, J. & Cantat, I. 2006 Viscous force exerted on a foam at a solid boundary: influence of the liquid fraction and of the bubble size. Europhys. Lett. 74, 909915.
Vaz, M. F. & Cox, S. J. 2005 Two-bubble instabilities in quasi-two-dimensional foams. Phil. Mag. Lett. 85, 415425.
Wilson, S. D. R. 1990 The Taylor–Saffman problem for a non-Newtonian liquid. J. Fluid Mech. 220, 413425.
Wong, H., Radke, C. J. & Morris, S. 1995 The motion of long bubbles in polygonal capillaries. J. Fluid Mech. 292, 7194.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (14.2 MB)
14.2 MB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (6.5 MB)
6.5 MB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (8.7 MB)
8.7 MB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (37.5 MB)
37.5 MB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (604 KB)
604 KB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (3.8 MB)
3.8 MB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (9.2 MB)
9.2 MB
VIDEO
Movies

Ben Salem et al. supplementary movie
Movies a to d illustrate the snapshots shown on figure 1a to d: (a) quasistatic response of foam to air injection (accelerated 420 times); (b) intermediate regime, showing the development of ductile fingers (slowed down 35 times); (c) and (d) high-speed regime, showing the development of (c) single or (d) multiple, branched fragile cracks (slowed down 100 times).

 Video (4.5 MB)
4.5 MB

Response of a two-dimensional liquid foam to air injection: swelling rate, fingering and fracture

  • Imen Ben Salem (a1), Isabelle Cantat (a1) and Benjamin Dollet (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.