Skip to main content Accessibility help

Response of a stratified boundary layer on a tilted wall to surface undulations

  • Pierre-Yves Passaggia (a1) (a2), Patrice Meunier (a1) and Stéphane Le Dizès (a1)


The structure of a stratified boundary layer over a tilted bottom with a small streamwise undulation is studied theoretically and numerically. We show that the tilt of the boundary can induce strong density variations and wall-transverse velocities in the critical layer when the frequency of the forcing by the topography $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}kU(z_c)$ is equal to the transverse Brunt–Väisälä frequency $N \sin \alpha $ ( $N$ being the vertical Brunt–Väisälä frequency). The viscous solution in the critical layer, obtained and compared with direct numerical simulation results, is in good agreement for both the scaling and the spatial structure. The amplitude of the transverse velocity response is also shown to exhibit quasi-resonance peaks when the stratification strength is varied.


Corresponding author

Email address for correspondence:


Hide All
Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Acheson, D. J. 1976 On over-reflection. J. Fluid Mech. 77, 433472.
Athanassiadou, M. & Castro, I. P. 2001 Neutral flow over a series of rough hills: a laboratory experiment. Boundary-Layer Meteorol. 101, 130.
Bai, Y.2012 Rayonnement d’une couche limite dans un milieu stratifié. Master’s thesis, University Paris XI.
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.
Benney, D. J. & Bergeron, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. Maths 48, 181204.
Besio, G., Blondeaux, P., Brocchini, M. & Vittori, G. 2004 On the modeling of sand wave migration. J. Geophys. Res. 109, 113.
Boulanger, N., Meunier, P. & Le Dizès, S. 2007 Structure of a tilted stratified vortex. J. Fluid Mech. 583, 443458.
Boulanger, N., Meunier, P. & Le Dizès, S. 2008 Instability of a tilted vortex in stratified fluid. J. Fluid Mech. 596, 120.
Candelier, J., Le Dizès, S. & Millet, C. 2012 Inviscid instability of a stably stratified compressible boundary layer on an inclined surface. J. Fluid Mech. 694, 524539.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Finnigan, J. J., Shaw, R. H. & Patton, E. G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387424.
Frehlich, R., Meillier, Y. & Jensen, M. L. 2008 Measurements of boundary layer profiles with in situ sensors and doppler lidar. J. Atmos. Ocean. Technol. 25, 13281340.
Garratt, J. 1992 The Atmospheric Boundary Layer. Cambridge University Press.
Garrett, C., MacCready, P. & Rhines, P. 1993 Boundary mixing and arrested Ekman layers: rotating stratified flow near a sloping boundary. Annu. Rev. Fluid Mech. 25, 291323.
Genin, A., Dayton, P. K., Lonsdale, P. F. & Spiess, F. N. 1986 Corals on seamount peaks provide evidence of current acceleration over deep sea topography. Nature 322, 5961.
Gong, W., Taylor, P. A. & Dornbrack, A. 1996 Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. J. Fluid Mech. 312, 131.
Haberman, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51, 139161.
Jackson, S. & Hunt, J. C. R. 1975 Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 101, 929955.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Lindzen, R. S. & Barker, J. W. 1985 Instability and wave over-reflection in stably stratified shear flow. J. Fluid Mech. 151, 189217.
MacCready, P. & Pawlak, G. 2001 Stratified flow along a rough slope: separation drag and wave drag. J. Phys. Oceanogr. 31, 28242839.
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.
Marquillie, M. & Ehrenstein, U. 2002 Numerical simulation of a separating boundary-layer flow. Comput. Fluids 31, 683693.
Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.
Nadeau, D. F., Pardyjak, E. R., Higgins, C. W. & Parlange, M. B. 2013 Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol. 147, 401419.
Ohya, Y. 2001 Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorol. 98, 5782.
Ohya, Y. & Uchida, T. 2008 Laboratory and numerical studies of the atmospheric stable boundary layers. J. Wind Engng Ind. Aerodyn. 96, 21502160.
Park, M. S. & Park, S. U. 2006 Effects of topographical slope angle and atmospheric stratification on surface-layer turbulence. Boundary-Layer Meteorol. 147, 613633.
Passaggia, P.-Y., Leweke, T. & Ehrenstein, U. 2012 Transverse instability and low-frequency flapping in separated boundary-layer flows: an experimental study. J. Fluid Mech. 703, 363373.
Riedinger, X., Le Dizès, S. & Meunier, P. 2011 Radiative instability of the flow around a rotating cylinder in a stratified fluid. J. Fluid Mech. 672, 130146.
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.
Sykes, R. I. 1978 Stratification effects in boundary layer flow over hills. Proc. R. Soc. Lond. A 361, 225243.
Taylor, P. A., Mason, P. J. & Bradley, E. F. 1987 Boundary-layer flow over low hills. Boundary-Layer Meteorol. 39, 107132.
Thorpe, S. A. 1992 The generation of internal waves by flow over the rough topography of a continental slope. Proc. R. Soc. Lond. A 439, 115130.
van Haren, H. & Howarth, M. J. 2004 Enhanced stability during reduction of stratification in the north sea. Cont. Shelf Res. 24, 805819.
Wu, X. & Zhang, J. 2008a Instability of a stratified boundary layer and its coupling with internal gravity waves. Part 1. Linear and nonlinear instabilities. J. Fluid Mech. 595, 379408.
Wu, X. & Zhang, J. 2008b Instability of a stratified boundary layer and its coupling with internal gravity waves. Part 2. Coupling with internal gravity waves via topography. J. Fluid Mech. 595, 409433.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Response of a stratified boundary layer on a tilted wall to surface undulations

  • Pierre-Yves Passaggia (a1) (a2), Patrice Meunier (a1) and Stéphane Le Dizès (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed