Skip to main content Accessibility help
×
Home

Reaction-infiltration instability in a compacting porous medium

  • David W. Rees Jones (a1) and Richard F. Katz (a1)

Abstract

Certain geological features have been interpreted as evidence of channelized magma flow in the mantle, which is a compacting porous medium. Aharonov et al. (J. Geophys. Res., vol. 100 (B10), 1995, pp. 20433–20450) developed a simple model of reactive porous flow and numerically analysed its instability to channels. The instability relies on magma advection against a chemical solubility gradient and the porosity-dependent permeability of the porous host rock. We extend the previous analysis by systematically mapping out the parameter space. Crucially, we augment numerical solutions with asymptotic analysis to better understand the physical controls on the instability. We derive scalings for the critical conditions of the instability and analyse the associated bifurcation structure. We also determine scalings for the wavelengths and growth rates of the channel structures that emerge. We obtain quantitative theories for and a physical understanding of, first, how advection or diffusion over the reactive time scale sets the horizontal length scale of channels and, second, the role of viscous compaction of the host rock, which also affects the vertical extent of channelized flow. These scalings allow us to derive estimates of the dimensions of emergent channels that are consistent with the geologic record.

Copyright

Corresponding author

Email address for correspondence: David.ReesJones@earth.ox.ac.uk

References

Hide All
Aharonov, E., Whitehead, J. A., Kelemen, P. B. & Spiegelman, M. 1995 Channeling instability of upwelling melt in the mantle. J. Geophys. Res. 100 (B10), 2043320450.
Asimow, P. D., Hirschmann, M. M. & Stolper, E. M. 1997 An analysis of variations in isentropic melt productivity. Phil. Trans. R. Soc. Lond. A 355, 255281.
von Bargen, N. & Waff, H. S. 1986 Permeabilities, interfacial-areas and curvatures of partially molten systems – results of numerical computation of equilibrium microstructures. J. Geophys. Res. 91, 92619276.
Braun, M. G. & Kelemen, P. B. 2002 Dunite distribution in the Oman ophiolite: implications for melt flux through porous dunite conduits. Geochem. Geophys. Geosyst. 3 (11), 8603.
Elthon, D. & Scarfe, C. M. 1984 High-pressure phase equilibria of a high-magnesia basalt and the genesis of primary oceanic basalts. Am. Mineral. 69 (1), 115.
Hesse, M. A., Schiemenz, A. R., Liang, Y. & Parmentier, E. M. 2011 Compaction–dissolution waves in an upwelling mantle column. Geophys. J. Intl 187 (3), 10571075.
Hewitt, I. J. 2010 Modelling melting rates in upwelling mantle. Earth Planet. Sci. Lett. 300, 264274.
Hinch, E. J. & Bhatt, B. S. 1990 Stability of an acid front moving through porous rock. J. Fluid Mech. 212, 279288.
Hoefner, M. L. & Fogler, H. S. 1988 Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34 (1), 4554.
Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B. & Kohlstedt, D. L. 2003 Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, 8607.
Katz, R. F. & Weatherley, S. M. 2012 Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges. Earth Planet. Sci. Lett. 335–336, 226237.
Kelemen, P. B. 1990 Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol. 31 (1), 5198.
Kelemen, P. B., Braun, M. & Hirth, G. 2000 Spatial distribution of melt conduits in the mantle beneath oceanic spreading ridges: observations from the Ingalls and Oman ophiolites. Geochem. Geophys. Geosyst. 1, 1005.
Kelemen, P. B., Dick, H. J. B. & Quick, J. E. 1992 Formation of hartzburgite by pervasive melt rock reaction in the upper mantle. Nature 358 (6388), 635641.
Kelemen, P. B., Shimizu, N. & Salters, V. J. M. 1995a Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375 (6534), 747753.
Kelemen, P. B., Whitehead, J. A., Aharonov, E. & Jordahl, K. A. 1995b Experiments on flow focusing in soluble porous-media, with applications to melt extraction from the mantle. J. Geophys. Res. 100, 475496.
Keller, T. & Katz, R. F. 2016 The role of volatiles in reactive melt transport in the asthenosphere. J. Petrol. 57 (6), 10731108.
Liang, Y., Schiemenz, A., Hesse, M. A., Parmentier, E. M. & Hesthaven, J. S. 2010 High-porosity channels for melt migration in the mantle: top is the dunite and bottom is the harzburgite and lherzolite. Geophys. Res. Lett. 37, L15306.
Longhi, J. 2002 Some phase equilibrium systematics of lherzolite melting: I. Geochem. Geophys. Geosyst. 3 (3), 133.
McKenzie, D. 1984 The generation and compaction of partially molten rock. J. Petrol. 25 (3), 713765.
Miller, K. J., Zhu, W., Montési, L. G. J. & Gaetani, G. A. 2014 Experimental quantification of permeability of partially molten mantle rock. Earth Planet. Sci. Lett. 388, 273282.
O’Hara, M. J. 1965 Primary magmas and the origin of basalts. Scott. J. Geol. 1 (1), 1940.
Ortoleva, P. J. 1994 Geochemical Self-organization. Oxford University Press.
Pec, M., Holtzman, B. K., Zimmerman, M. E. & Kohlstedt, D. L. 2015 Reaction infiltration instabilities in experiments on partially molten mantle rocks. Geology 43 (7), 575578.
Pec, M., Holtzman, B. K., Zimmerman, M. E. & Kohlstedt, D. L. 2017 Reaction infiltration instabilities in mantle rocks: an experimental investigation. J. Petrol. 58 (5), 9791003.
Quick, J. E. 1982 The origin and significance of large, tabular dunite bodies in the Trinity peridotite, northern California. Contrib. Mineral. Petrol. 78 (4), 413422.
Ramberg, H. 1972 Mantle diapirism and its tectonic and magmagenetic consequences. Phys. Earth Planet. Inter. 5, 4560.
Rees Jones, D. W., Katz, R. F., Tian, M. & Rudge, J. F. 2018 Thermal impact of magmatism in subduction zones. Earth Planet. Sci. Lett. 481, 7379.
Rudge, J. F.2017 Microscale models of partially molten rocks and their macroscale physical properties. Presented at Fall Meeting, AGU 2017 (DI51B-0314).
Rudge, J. F. 2018 Textural equilibrium melt geometries around tetrakaidecahedral grains. Proc. R. Soc. Lond. A 474, 20170639.
Schiemenz, A., Liang, Y. & Parmentier, E. M. 2011 A high-order numerical study of reactive dissolution in an upwelling heterogeneous mantle – I. Channelization, channel lithology and channel geometry. Geophys. J. Intl 186 (2), 641664.
Sleep, N. H. 1988 Tapping of melt by veins and dikes. J. Geophys. Res. 93 (B9), 1025510272.
Spiegelman, M. 1993 Flow in deformable porous-media. Part 1. Simple analysis. J. Fluid Mech. 247, 1738.
Spiegelman, M. & Kelemen, P. B. 2003 Extreme chemical variability as a consequence of channelized melt transport. Geochem. Geophys. Geosyst. 4 (7), 1055.
Spiegelman, M., Kelemen, P. B. & Aharonov, E. 2001 Causes and consequences of flow organization during melt transport: the reaction infiltration instability in compactible media. J. Geophys. Res. 106 (B2), 20612077.
Stevenson, D. J. 1989 Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophys. Res. Lett. 16 (9), 10671070.
Stolper, E. 1980 A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib. Mineral. Petrol. 74 (1), 1327.
Szymczak, P. & Ladd, A. J. C. 2012 Reactive-infiltration instabilities in rocks. Fracture dissolution. J. Fluid Mech. 702, 239264.
Szymczak, P. & Ladd, A. J. C. 2013 Interacting length scales in the reactive-infiltration instability. Geophys. Res. Lett. 40 (12), 30363041.
Szymczak, P. & Ladd, A. J. C. 2014 Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix. J. Fluid Mech. 738, 591630.
Weatherley, S. M. & Katz, R. F. 2012 Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle. Geochem. Geophys. Geosyst. 13, Q0AC18.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Reaction-infiltration instability in a compacting porous medium

  • David W. Rees Jones (a1) and Richard F. Katz (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.