Andrews, M. J. & Dalziel, S. B.
2010
Small Atwood number Rayleigh–Taylor experiments. Phil. Trans. R. Soc. Lond. A
368 (1916), 1663–1679.

Baker, G. R., Meiron, D. I. & Orszag, S. A.
1980
Vortex simulation of the Rayleigh–Taylor instability. Phys. Fluids
23 (8), 1485–1490.

Banerjee, A. & Andrews, M. J.
2006
Statistically steady measurements of Rayleigh–Taylor mixing in a gas channel. Phys. Fluids
18 (3), 035107.

Betti, R. & Sanz, J.
2006
Bubble acceleration in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett.
97, 205002.

Cabot, W. H.
2006
Comparison of two- and three-dimensional simulations of miscible Rayleigh–Taylor instability. Phys. Fluids
18, 045101.

Clavin, P. & Williams, F.
2005
Asymptotic spike evolution in Rayleigh–Taylor instability. J. Fluid Mech.
525, 105–113.

Collins, B. D. & Jacobs, J. W.
2002
PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF_{6} interface. J. Fluid Mech.
464, 113–136.

Cook, A. W.
2007
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing. Phys. Fluids
19, 055103.

Cook, A. W.
2009
Enthaply diffusion in multicomponent flows. Phys. Fluids
21, 055109.

Cook, A. W. & Cabot, W. H.
2004
A high-wavenumber viscosity for high-resolution numerical methods. J. Comput. Phys.
195, 594–601.

Cook, A. W. & Cabot, W. H.
2005
Hyperviscosity for shock-turbulence interactions. J. Comp. Phys.
203, 379–385.

Cook, A. W. & Dimotakis, P. E.
2001
Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech.
443, 69–99.

Davies, R. M. & Taylor, G.
1950
The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. A
200, 375–390.

Dimonte, G.
1999
Nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas
6 (5), 2009–2015.

Dimonte, G., Gore, R. & Schneider, M.
1998
Rayleigh–Taylor instability in elastic-plastic materials. Phys. Rev. Lett.
80 (6), 1212–1215.

Dimotakis, P. E.
2000
The mixing transition in turbulence. J. Fluid Mech.
409, 69–97.

Glimm, J. & Li, X. L.
1988
Validation of the Sharp-Wheeler bubble merger model from experimental and computational data. Phys. Fluids
31 (8), 2077–2085.

Goncharov, V. N.
2002
Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett.
88 (13), 134502.

Jacobs, J. W. & Catton, I.
1988
Three-dimensional Rayleigh–Taylor instability. Part 2. Experiment. J. Fluid Mech.
187, 353–371.

Jacobs, J. W. & Krivets, V. V.
2005
Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids
17, 034105.

Jacobs, J. W., Krivets, V. V., Tsiklashvili, V. & Likhachev, O. A.
2013
Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation. Shock Waves
23 (4), 407–413.

Jones, M. A. & Jacobs, J. W.
1997
A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas interface. Phys. Fluids
9, 3078–3085.

Kolev, Tz. V. & Rieben, R. N.
2009
A tensor artificial viscosity using finite element approach. J. Comp. Phys.
228, 8336–8366.

Layzer, D.
1955
On the instability of superposed fluids in a gravitational field. Astrophys. Rev. J.
122, 1–12.

Lewis, D. J.
1950
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes 2. Proc. R. Soc. Lond. A
202 (1068), 81–96.

Long, C. C., Krivets, V. V., Greenough, J. A. & Jacobs, J. W.
2009
Shock tube experiments and numerical simulation of the single-mode, three-dimensional Richtmyer–Meshkov instability. Phys. Fluids
21, 114104.

McFarland, J. A., Greenough, J. A. & Ranjan, D.
2011
Computational parametric study of a Richtmyer–Meshkov instability for an inclined interface. Phys. Rev. E
84, 026303.

Menikoff, R. & Zemach, C.
1983
Rayleigh–Taylor instability and the use of conformal maps for ideal fluid flow. J. Comput. Phys.
51, 28–64.

Mikaelian, K. O.
2008
Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys. Rev. E
78, 015303.

Mikaelian, K. O.
2009
Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities. Phys. Fluids
21 (2), 024103.

Mikaelian, K. O.
2014
Solution to Rayleigh–Taylor instabilities: bubbles, spikes, and their scalings. Phys. Rev. E
89, 053009.

Morgan, R. V., Likhachev, O. A. & Jacobs, J. W.
2016
Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory. J. Fluid Mech
791, 34–60.

Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D.
2001
Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas
8, 2108–2115.

Owczarek, J. A.
1964
Fundamentals of Gas Dynamics. International Textbook Co.

Poinsot, T. J. & Lele, S. K.
1992
Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys.
101, 104–129.

Popil, R. & Curzon, F. L.
1979
Production of reproducible Rayleigh–Taylor instabilities. Rev. Sci. Instrum.
50 (10), 1291–1295.

Ramaprabhu, P. & Dimonte, G.
2005
Single-mode dynamics of the Rayleigh–Taylor instability at any density ratio. Phys. Rev. E
71 (3), 036314.

Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P.-H. & Jayaraj, J.
2012
The late-time dynamics of the single-mode Rayleigh–Taylor instability. Phys. Fluids
24 (7), 074107.

Ramaprabhu, P., Dimonte, G., Young, Y.-N., Calder, A. C. & Fryxell, B.
2006
Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem. Phys. Rev. E
74 (6), 066308.

Ratafia, M.
1973
Experimental investigation of Rayleigh–Taylor instability. Phys. Fluids
16 (8), 1207–1210.

Rayleigh, Lord
1883
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc.
14, 170–177.

Reckinger, S. J., Livescu, D. & Vasilyev, O. V.
2010
Adaptive wavelet collocation method simulation of Rayleigh–Taylor instability. Phys. Scr.
T142, 014064.

Reckinger, S. J., Livescu, D. & Vasilyev, O. V.
2016
Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability. J. Comput. Phys.
313, 181–208.

Settles, G. S.
2001
Schlieren and Shadowgraph Techniques. Springer.

Sharp, D. H.
1984
An overview of Rayleigh–Taylor instability. Physica D
12 (1–3), 3–18.

Sharp, R. W. Jr. & Barton, R. T. 1981 Hemp advection model. *UCID-17809 Rev.1, Lawrence Livermore Laboratory*.

Taylor, G. I.
1950
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes 1. Proc. R. Soc. Lond. A
201, 192–196.

Thompson, K. W.
1987
Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys.
68, 1–24.

Wei, T. & Livescu, D.
2012
Late-time quadratic growth in single-mode Rayleigh–Taylor instability. Phys. Rev. E
86 (4), 046405.

Wilkins, M. L.1963 Calculation of elastic-plastic flow. *UCRL-7322, Lawrence Radiation Laboratory*.

Wilkinson, J. P. & Jacobs, J. W.
2007
Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability. Phys. Fluids
19, 124102.

Youngs, D. L.
1984
Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D
12, 32–44.

Zaytsev, S. G., Krivets, V. V., Mazilin, I. M., Titov, S. N., Chebotareva, E. I., Nikishin, V. V., Tishkin, V. F., Bouquet, S. & Haas, J.-F.
2003
Evolution of the Rayleigh–Taylor instability in the mixing zone between gases of different densities in a field of variable acceleration. Laser Part. Beams
21 (3), 393–402.

Zhang, Q.
1998
Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett.
81 (16), 3391–3394.

Zhou, Y., Robey, H. F. & Buckingham, A. C.
2003
Onset of turbulence in accelerated high-Reynolds-number flow. Phys. Rev. E
67 (5), 056305.