Skip to main content Accessibility help

Rapid distortion theory on transversely sheared mean flows of arbitrary cross-section

  • M. E. Goldstein (a1), S. J. Leib (a2) and M. Z. Afsar (a3)


This paper is concerned with rapid distortion theory on transversely sheared mean flows that (among other things) can be used to analyse the unsteady motion resulting from the interaction of a turbulent shear flow with a solid surface. It expands on a previous analysis of Goldstein et al. (J. Fluid Mech., vol. 824, 2017, pp. 477–512) that uses a pair of conservation laws to derive upstream boundary conditions for planar mean flows and extends these findings to transversely sheared flows of arbitrary cross-section. The results, which turn out to be quite general, are applied to the specific case of a round jet interacting with the trailing edge of a flat plate and are used to calculate the radiated sound field, which is then compared with experimental data taken at the NASA Glenn Research Center.


Corresponding author

Email address for correspondence:


Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematica Functions. Nat. Bureau Stand. Appl. Math. Ser., vol. 55. National Bureau of Standards US Department of Commerce.
Abreu, L. I., Nogueira, P. A. S., Nilton, M. M. & Cavalieri, A. V. G.2019 Resolvent analysis applied to acoustic analogies. AIAA Paper 2019-2402.
Baker, D. J. & Peake, N.2019 Scattering in rotational flow. AIAA Paper 2019-2554.
Batchelor, G. K. & Proudman, I. 1954 The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths 7 (1), 83103.
Bers, A. 1975 Linear waves and instabilities. In Plasma Physics (ed. Dewitt, C. & Perraud, J.), pp. 113216. Gordon & Breach.
Bilka, M. J., Kerrian, P., Ross, M. H. & Morris, S. C. 2014 Radiated sound from a circular cylinder in a turbulent shear layer. Intl J. Aeroacoust. 13 (7), 511532.
Bridges, J. & Brown, C. A.2005 Validation of the small hot jet rig for jet noise research. AIAA Paper 2005-2846.
Briggs, R. J. 1964 Electron Stream Interaction with Plasmas. MIT Press.
Brown, C. A. 2013 Jet-surface interaction test: far-field noise results. Trans ASME J. Engng Gas Turbines Power 135 (7), 071201-071201-7.
Brown, C. A.2015a An empirical jet-surface interaction noise model with temperature and nozzle aspect ratio effects. AIAA 2015-0229.
Brown, C. A.2015b Empirical models for the shielding and reflection of jet mixing noise by a surface. AIAA 2015-3128.
Brown, C. A. & Bridges, J.2006 Small hot jet acoustic rig validation. NASA-TM-2006-214234.
Campbell, G. A. & Foster, R. M.1948 Fourier Integrals for Practical Applications. D. Van Nostrand Co. Inc.
Dennis, D. C. J. & Nickels, T. B. 2008 On the limitations of Taylor’s hypothesis in constructing long structures in turbulent boundary layers. J. Fluid Mech. 614, 197206.
Goldstein, M. E. 1976 Aeroacoustics. McGraw-Hill Book Company.
Goldstein, M. E. 1978a Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89 (3), 433468.
Goldstein, M. E. 1978b Characteristics of the unsteady motion on transversely sheared mean flows. J. Fluid Mech. 84 (2), 305329.
Goldstein, M. E. 1979a Turbulence generated by entropy fluctuation with non-uniform mean flows. J. Fluid Mech. 93 (2), 209224.
Goldstein, M. E. 1979b Scattering and distortion of the unsteady motion on transversely sheared mean flows. J. Fluid Mech. 91 (4), 601632.
Goldstein, M. E., Afsar, M. Z. & Leib, S. J. 2013a Non-homogeneous rapid distortion theory on transversely sheared mean flows. J. Fluid Mech. 736, 532569.
Goldstein, M. E., Afsar, M. Z. & Leib, S. J.2013b Structure of small amplitude motion on transversely sheared mean flows. NASA/TM-2013-217862.
Goldstein, M. E., Leib, S. J. & Afsar, M. Z. 2017 Generalized rapid distortion theory on transversely sheared mean flows with physically realizable upstream boundary conditions: application to the trailing edge problem. J. Fluid Mech. 824, 477512.
Huete Ruiz de Lira, C. 2010 Turbulence generation by a shock wave interacting with a random density inhomogeneity field. Phys. Scr. T142, 014022.
Huete Ruiz de Lira, C., Velikovich, A. L. & Wouchuk, J. G. 2011 Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field. Phys. Rev. E 83, 056320.
Huete, C., Wouchuk, J. G. & Velikovich, A. L. 2012 Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field. Phys. Rev. E 85, 026312.
Hunt, J. C. R. 1973 A theory of turbulent flow around two dimensional bluff bodies. J. Fluid Mech. 61, 625706.
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20 (10), 657674.
Leib, S. J. & Goldstein, M. E. 2011 Hybrid source model for predicting high-speed jet noise. AIAA J. 49 (7), 13241335.
Lighthill, M. J. 1964 Fourier Analysis and Generalized Functions. Cambridge University Press.
Lin, C. C. 1953 On Taylor’s hypothesis and the accelerating terms in Navier–Stokes equations. Q. Appl. Maths 10, 295306.
Moore, F. K.1954 Unsteady oblique interaction of a shock wave with a plane disturbance. NACA Tech. Rep. 2879.
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.
Moffatt, H. K. 1967 The interaction of turbulence with strong wind shear. In Colloquium on Atmospheric Turbulence and Radio Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 139156. Nauka.
Noble, B. 1958 Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations. Pergamon.
Olsen, W. & Boldman, D.1979 Trailing edge noise data with comparison to theory. AIAA Paper 79-1524.
Orr, W. M. 1907 The stability and instability of the unsteady motions of a perfect liquid and of a viscous liquid. Proc. R. Irish Acad. A27, 69138.
Pope, S. 2000 Turbulent Flows, 1st edn. Cambridge University Press.
Ramakrishnan, K., Paliath, U., Pastouchencko, N., Malcevic, I., Pilon, A., Morgenstern, J., Buonanno, M., Martinez, M. & Majjigi, M.2018 Evaluation of low noise integration concepts and propulsion technologies for future supersonic civil transports. NASA CR-2018-219936.
Ribner, H. S.1953 Convection of a pattern of vorticity through a shock wave. NACA Tech. Rep. 1164.
Ross, M. H.2009 Radiated sound generated by airfoils in a single stream shear layer, Master’s thesis, University of Notre Dame, Notre Dame, IN.
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics, 2nd edn. Springer International Publishing.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476490.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press.
Tufts, A., Wang, K. & Wang, M.2018 Computational study of sound by airfoil interaction with a turbulent shear layer. In AIAA Aerospace Sciences meeting, Kissimmee Florida, January 8–12, AIAA Paper 2018-0757.
Wiener, N. 1938 The use of statistical theory to study turbulence. In Proceedings of the 5th International Congress Applied Mechanics, pp. 356360. John Wiley.
Wouchuk, J. G., Huete Ruiz de Lira, C. & Velikovich, A. L. 2009 Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79, 066315.
Xie, Z., Karimi, M. & Girimaji, S. S. 2017 Small perturbation evolution in compressible Poiseuille flow–velocity interactions and obliqueness effects. J. Fluid Mech. 814, 249276.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Rapid distortion theory on transversely sheared mean flows of arbitrary cross-section

  • M. E. Goldstein (a1), S. J. Leib (a2) and M. Z. Afsar (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed