Skip to main content Accessibility help
×
Home

Quantifying acoustic damping using flame chemiluminescence

  • E. Boujo (a1), A. Denisov (a2), B. Schuermans (a3) and N. Noiray (a1)

Abstract

Thermoacoustic instabilities in gas turbines and aeroengine combustors fall within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by postprocessing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.

Copyright

Corresponding author

Email address for correspondence: eboujo@ethz.ch

References

Hide All
Altay, H. M., Speth, R. L., Hudgins, D. E. & Ghoniem, A. F. 2009 Flame vortex interaction driven combustion dynamics in a backward-facing step combustor. Combust. Flame 156 (5), 11111125.
Ayoola, B. O., Balachandran, R., Frank, J. H., Mastorakos, E. & Kaminski, C. 2006 Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144 (1–2), 116.
Bade, S., Wagner, M., Hirsch, C., Sattelmayer, T. & Schuermans, B. 2013 Design for thermo-acoustic stability: modeling of burner and flame dynamics. Trans. ASME J. Engng Gas Turbines Power 135 (11), 111502.
Balusamy, S., Li, L. K. B., Han, Z., Juniper, M. P. & Hochgreb, S. 2015 Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35 (3), 32293236.
Ćosić, B., Terhaar, S., Moeck, J. P. & Paschereit, C. O. 2015 Response of a swirl-stabilized flame to simultaneous perturbations in equivalence ratio and velocity at high oscillation amplitudes. Combust. Flame 162 (4), 10461062.
Culick, F. E. C. 1976 Nonlinear behavior of acoustic waves in combustion chambers-I. Acta Astron. 3, 715734.
Culick, F. E. C.2006 Unsteady motions in combustion chambers for propulsion systems. RTO AGARDograph AG-AVT-039. RTO/NATO.
Docquier, N. & Candel, S. 2002 Combustion control and sensors: a review. Prog. Energy Combust. Sci. 28 (2), 107150.
Gopalakrishnan, E. A., Tony, J., Sreelekha, E. & Sujith, R. I. 2016 Stochastic bifurcations in a prototypical thermoacoustic system. Phys. Rev. E 94, 022203.
Guyot, D. & Paschereit, C. O. 2009 Optical transfer function measurements for a swirl burner at atmospheric pressure. In 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; https://doi.org/10.2514/6.2009-5413.
Higgins, B., McQuay, M. Q., Lacas, F., Rolon, J. C., Darabiha, N. & Candel, S. 2001 Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames. Fuel 80, 6774.
Keller, J. O. & Saito, K. 1987 Measurements of the combusting flow in a pulse combustor. Combust. Sci. Technol. 53 (2-3), 137163.
Lauer, M., Zellhuber, M., Sattelmayer, T. & Aul, C. J. 2011 Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence. Trans. ASME J. Engng Gas Turbines Power 133 (12), 121501.
Lieuwen, T. 2003 Statistical characteristics of pressure oscillations in a premixed combustor. J. Sound Vib. 260, 317.
Lieuwen, T. 2005 Online combustor stability margin assessment using dynamic pressure data. Trans. ASME J. Engng Gas Turbines Power 127, 478482.
Lieuwen, T. 2012 Unsteady Combustor Physics. Cambridge University Press.
Mejia, D., Miguel-Brebion, M. & Selle, L. 2016 On the experimental determination of growth and damping rates for combustion instabilities. Combust. Flame 169, 287296.
Najm, H. N., Paul, P. H., Mueller, C. J. & Wyckoff, P. S. 1998 On the adequacy of certain experimental observables as measurements of flame burning rate. Combust. Flame 113 (3), 312332.
Noiray, N. 2016 Linear growth rate estimation from dynamics and statistics of acoustic signal envelope in turbulent combustors. Trans. ASME J. Engng Gas Turbines Power 139 (4), 041503.
Noiray, N. & Denisov, A. 2016 A method to identify thermoacoustic growth rates in combustion chambers from dynamic pressure time series. Proc. Combust. Inst. accepted for publication; doi:10.1016/j.proci.2016.06.092.
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.
Noiray, N. & Schuermans, B. 2013 Deterministic quantities characterizing noise driven Hopf bifurcations in gas turbine combustors. Intl J. Non-Linear Mech. 50, 152163.
Palies, P., Durox, D., Schuller, T. & Candel, S. 2011 Acoustic-convective mode conversion in an aerofoil cascade. J. Fluid Mech. 672, 545569.
Poinsot, T. 2016 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. accepted for publication; https://doi.org/10.1016/j.proci.2016.05.007.
Poinsot, T., Yip, B., Veynante, D., Trouvé, A., Samaniego, J. M. & Candel, S. 1992 Active control: an investigation method for combustion instabilities. J. Phys. III 2 (7), 13311357.
Rajaram, R. & Lieuwen, T. 2009 Acoustic radiation from turbulent premixed flames. J. Fluid Mech. 637, 357385.
Risken, H. 1984 The Fokker–Planck Equation. Springer.
Sattelmayer, T. 2002 Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. Trans. ASME J. Engng Gas Turbines Power 125 (1), 1119.
Schuermans, B.2003 Modeling and control of thermoacoustic instabilities. PhD thesis, EPFL.
Stratonovich, R. L. 1967 Topics in the Theory of Random Noise. Gordon & Breach.
Worth, N. A. & Dawson, J. R. 2013 Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. Combust. Flame 160 (11), 24762489.
Yi, T. & Gutmark, E. J. 2008 Online prediction of the onset of combustion instability based on the computation of damping ratios. J. Sound Vib. 310 (12), 442447.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Boujo supplementary material
Boujo supplementary material 1

 Unknown (51 KB)
51 KB

Quantifying acoustic damping using flame chemiluminescence

  • E. Boujo (a1), A. Denisov (a2), B. Schuermans (a3) and N. Noiray (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.