Skip to main content Accessibility help

Puffing in planar buoyant plumes: BiGlobal instability analysis and experiments

  • Kuchimanchi K. Bharadwaj (a1) and Debopam Das (a1)


The present study investigates the puffing behaviour of planar buoyant plumes by employing linear BiGlobal stability analysis and experiments. The BiGlobal instability characteristics of two-dimensional plumes have been explored using stability analysis and compared with the puffing behaviour of both rectangular plumes and square plumes obtained from experiments. In the parameter space investigated, which spans a Richardson number range $0.03<Ri<960$ , instability analysis reveals that planar plumes exhibit BiGlobal instability only for varicose perturbations, while they remain stable for sinuous perturbations. The BiGlobal frequency and growth rates of the unstable varicose mode are used to obtain Strouhal number correlation and stability curves. An investigation into the effect of the spanwise wavenumber on BiGlobal instability indicates that planar plumes are more unstable to two-dimensional perturbations than to three-dimensional perturbations. An increase in the spanwise wavenumber tends to stabilize planar plumes without affecting their oscillation frequencies. Experiments suggest that the puffing frequencies in rectangular plumes closely follow the power law obtained from two-dimensional instability analysis while exhibiting a weaker dependence on inlet aspect ratio. To further explore the effect of aspect ratio on puffing behaviour, experiments have been carried out in plumes of aspect ratio 1, i.e. square plumes. Square plumes are found to be more stable and to exhibit higher puffing frequencies than rectangular plumes. The reasons for these differences in puffing dynamics between rectangular and square plumes have been explored from the phase-locked streamwise and spanwise flow visualizations. In addition to puffing, spanwise visualizations in both rectangular and square plumes show the presence of secondary flows at their corners, similar to their constant-density jet counterparts. Finally, from experiments, we deduced a new universal puffing frequency correlation with the hydraulic diameter as the length scale which eliminates the aspect ratio dependence, and is valid for both square and low-aspect-ratio rectangular plumes.


Corresponding author

Email address for correspondence:


Hide All
ANSYS, Inc.2009 ANSYS Fluent 12.0 user’s guide.
ANSYS, Inc.2013 Release 15.0 theory guide.
Bharadwaj, K. K. & Das, D. 2017 Global instability analysis and experiments on buoyant plumes. J. Fluid Mech. 832, 97145.10.1017/jfm.2017.665
Cetegen, B. M. 1997 Behavior of naturally unstable and periodically forced axisymmetric buoyant plumes of helium and helium–air mixtures. Phys. Fluids 9 (12), 37423752.10.1063/1.869512
Cetegen, B. M. & Ahmed, T. A. 1993 Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93 (1–2), 157184.10.1016/0010-2180(93)90090-P
Cetegen, B. M., Dong, Y. & Soteriou, M. C. 1998 Experiments on stability and oscillatory behavior of planar buoyant plumes. Phys. Fluids 10 (7), 16581665.10.1063/1.869683
Cetegen, B. M. & Kasper, K. D. 1996 Experiments on the oscillatory behavior of buoyant plumes of helium and helium–air mixtures. Phys. Fluids 8 (11), 29742984.10.1063/1.869075
Chakravarthy, R. V. K., Lesshafft, L. & Huerre, P. 2018 Global stability of buoyant jets and plumes. J. Fluid Mech. 835, 654673.10.1017/jfm.2017.764
Chandler, G. J., Juniper, M. P., Nichols, J. W. & Schmid, P. J. 2012 Adjoint algorithms for the Navier–Stokes equations in the low Mach number limit. J. Comput. Phys. 231 (4), 19001916.10.1016/
Chomaz, J.-M. 2003 Fully nonlinear dynamics of parallel wakes. J. Fluid Mech. 495, 5775.10.1017/S0022112003006335
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2017 Global instability of low-density jets. J. Fluid Mech. 820, 187207.10.1017/jfm.2017.203
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 Modal and transient dynamics of jet flows. Phys. Fluids 25 (4), 044103.10.1063/1.4801751
Gebhart, B., Jaluria, Y., Mahajan, R. L. & Sammakia, B. 1988 Buoyancy-Induced Flows and Transport. Springer.
Gutmark, E. J. & Grinstein, F. F. 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31 (1), 239272.10.1146/annurev.fluid.31.1.239
Hattori, T., Bartos, N., Norris, S. E., Kirkpatrick, M. P. & Armfield, S. W. 2013a Experimental and numerical investigation of unsteady behaviour in the near-field of pure thermal planar plumes. Exp. Therm. Fluid Sci. 46, 139150.10.1016/j.expthermflusci.2012.12.005
Hattori, T., Norris, S. E., Kirkpatrick, M. P. & Armfield, S. W. 2013b Prandtl number dependence and instability mechanism of the near-field flow in a planar thermal plume. J. Fluid Mech. 732, 105127.10.1017/jfm.2013.392
Hattori, T., Norris, S. E., Kirkpatrick, M. P. & Armfield, S. W. 2013c Simulation and analysis of puffing instability in the near field of pure thermal planar plumes. Intl J. Therm. Sci. 69, 113.10.1016/j.ijthermalsci.2013.01.016
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.10.1146/annurev.fl.22.010190.002353
Jiang, X. & Luo, K. H. 2000a Direct numerical simulation of the puffing phenomenon of an axisymmetric thermal plume. Theor. Comput. Fluid Dyn. 14 (1), 5574.10.1007/s001620050125
Jiang, X. & Luo, K. H. 2000b Spatial direct numerical simulation of the large vortical structures in forced plumes. Flow Turbul. Combust. 64 (1), 4369.10.1023/A:1009950127478
Juniper, M. P., Hanifi, A. & Theofilis, V. 2014 Modal stability theory: lecture notes from the FLOW-NORDITA summer school on advanced instability methods for complex flows, Stockholm, Sweden, 2013. Appl. Mech. Rev. 66 (2), 024804.10.1115/1.4026604
Lesshafft, L. 2018 Artificial eigenmodes in truncated flow domains. Theor. Comput. Fluid Dyn. 32, 245262.10.1007/s00162-017-0449-6
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.10.1063/1.2437238
Malalasekera, W. M. G., Versteeg, H. K. & Gilchrist, K. 1996 A review of research and an experimental study on the pulsation of buoyant diffusion flames and pool fires. Fire Mater. 20 (6), 261271.10.1002/(SICI)1099-1018(199611)20:6<261::AID-FAM578>3.0.CO;2-M
Nichols, J. W., Schmid, P. J. & Riley, J. J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341376.10.1017/S0022112007005903
Pera, L. & Gebhart, B. 1971 On the stability of laminar plumes: some numerical solutions and experiments. Intl J. Heat Mass Transfer 14 (7), 975984.10.1016/0017-9310(71)90123-2
Quinn, W. R. 1992 Streamwise evolution of a square jet cross section. AIAA J. 30 (12), 28522857.10.2514/3.48973
Ravier, S., Abid, M., Amielh, M. & Anselmet, F. 2006 Direct numerical simulations of variable-density plane jets. J. Fluid Mech. 546, 153191.10.1017/S0022112005006993
Raynal, L., Harion, J.-L., Favre-Marinet, M. & Binder, G. 1996 The oscillatory instability of plane variable-density jets. Phys. Fluids 8 (4), 9931006.10.1063/1.868877
Sau, A. 1999 Three-dimensional simulation of flows through a rectangular sudden expansion. Phys. Fluids 11 (10), 30033016.10.1063/1.870159
Sau, A. 2002 Vortex dynamics and mass entrainment in a rectangular channel with a suddenly expanded and contracted part. Phys. Fluids 14 (9), 32803308.10.1063/1.1498839
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows, vol. 142. Springer Science & Business Media.
Soteriou, M. C., Dong, Y. & Cetegen, B. M. 2002 Lagrangian simulation of the unsteady near field dynamics of planar buoyant plumes. Phys. Fluids 14 (9), 31183140.10.1063/1.1491248
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exp. Fluids 7 (5), 309317.10.1007/BF00198449
Subbarao, E. R. & Cantwell, B. J. 1992 Investigation of a co-flowing buoyant jet: experiments on the effect of Reynolds number and Richardson number. J. Fluid Mech. 245, 6990.10.1017/S0022112092000351
Theofilis, V. 2003 Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.10.1016/S0376-0421(02)00030-1
Tieszen, S. R. 2001 On the fluid mechanics of fires. Annu. Rev. Fluid Mech. 33 (1), 6792.10.1146/annurev.fluid.33.1.67
Versteeg, H. K. & Malalasekera, W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education.
Wilke, C. R. 1950 A viscosity equation for gas mixtures. J. Chem. Phys. 18 (4), 517519.10.1063/1.1747673
Yang, H. Q. 1992 Buckling of a thermal plume. Intl J. Heat Mass Transfer 35 (6), 15271532.10.1016/0017-9310(92)90042-Q
Yu, M.-H. & Monkewitz, P. A. 1993 Oscillations in the near field of a heated two-dimensional jet. J. Fluid Mech. 255, 323347.10.1017/S0022112093002502
Zaman, K. B. M. Q. 1996 Axis switching and spreading of an asymmetric jet: the role of coherent structure dynamics. J. Fluid Mech. 316, 127.10.1017/S0022112096000420
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Puffing in planar buoyant plumes: BiGlobal instability analysis and experiments

  • Kuchimanchi K. Bharadwaj (a1) and Debopam Das (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed